974 resultados para Antigens, CD -- immunology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subunit vaccines commonly lack sufficient immunogenicity to stimulate a comprehensive protective immune response in vivo. We have investigated the potential of specific cytokines (interleukin-2) and particulate delivery systems (liposomes) to enhance antigenicity. Here we report that the IgG1 and IFN-gamma responses to a subunit antigen, consisting of a T and B-cell epitope from Influenza haemagglutinin, can be improved when it is both fused to interelukin-2 and encapsulated in liposomes. However, this vaccine formulation was not able to protect animals against a challenge with live Influenza A/PR/8/34 virus. The addition of more potent immune stimulators may be necessary to improve responses. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG-/-recipients) are reconstituted with naive CD4+ T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4+ T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG-/- hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tuberculosis TB es una de las principales causas de muerte en el mundo en individuos con infección por VIH. En Colombia esta coinfección soporta una carga importante en la población general convirtiéndose en un problema de salud pública. En estos pacientes las pruebas diagnósticas tienen sensibilidad inferior y la enfermedad evoluciona con mayor frecuencia hacia formas diseminadas y rápidamente progresivas y su diagnóstico oportuno representa un reto en Salud. El objetivo de este proyecto es evaluar el desempeño de las pruebas diagnósticas convencionales y moleculares, para la detección de TB latente y activa pacientes con VIH, en dos hospitales públicos de Bogotá. Para TB latente se evaluó la concordancia entre las pruebas QuantiFERON-TB (QTF) y Tuberculina (PPD), sugiriendo superioridad del QTF sobre la PPD. Se evaluaron tres pruebas diagnósticas por su sensibilidad y especificidad, baciloscopia (BK), GenoType®MTBDR plus (Genotype) y PCR IS6110 teniendo como estándar de oro el cultivo. Los resultados de sensibilidad (S) y especificidad (E) de cada prueba con una prevalencia del 19,4 % de TB pulmonar y extrapulmonar en los pacientes que participaron del estudio fue: BK S: 64% E: 99,1%; Genotype S: 77,8% E: 94,5%; PCRIS6110 S: 73% E: 95,5%, de la misma forma se determinaron los valores predictivos positivos y negativos (VPP y VPN) BK: 88,9% y 94,8%, Genotype S: 77,8% E: 94,5%; PCRIS6110 S: 90% y 95,7%. Se concluyó bajo análisis de curva ROC que las pruebas muestran un rendimiento diagnóstico similar por separado en el diagnóstico de TB en pacientes con VIH, aumentando su rendimiento diagnostico cuando se combinan

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis sexually transmitted infection can cause serious reproductive morbidities. This study determined the prevalence of serum IgG response to C. trachomatis putative stress response proteins in females to test for an association with genital tract pathology. There was no significant association of serum IgG to HtrA, Tsp, or RseP with infection or pathology. cHSP60 serum IgG prevalence was significantly associated with infection compared to negative (infertile) controls (p = 0.002), but not with upper genital tract pathology. Serum IgG1-4 antibody subclasses reactive with the antigens was not significantly different between cohorts, although different responses to each antigen were detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of vaccines to combat pathogens that infect across mucosal surfaces has been a major goal of vaccine research. Successful mucosal vaccination requires the co-administration of adjuvants that can overcome the state of immune tolerance normally associated with mucosal application of proteins. In the case of oral immunization, delivery systems are also required to protect vaccine antigens against destruction by gastric pH and digestive enzymes. Furthermore, adjuvants used for mucosal delivery must be free of neurotoxic effects like those induced by the commonly used experimental mucosal adjuvant cholera toxin. Maintenance of the "cold chain" is also essential for the effectiveness of any vaccine and adjuvants/delivery systems that enhance the stability of a vaccine would offer a significant advantage. Needle-free methods of vaccination that induce protective immunity at multiple mucosal surfaces are also desirable for rapid vaccination of large populations. In the present study we show that transcutaneous immunization (TCI) using Lipid C, a novel lipid-based matrix originally developed for oral immunization, containing soluble Helicobacter sonicate significantly reduces the gastric bacterial burden in mice following gastric challenge with live Helicobacter pylori. Protection is associated with the production of splenic gamma interferon and gastric IgA and was achieved without the co-administration of potent and potentially toxic adjuvants, although protection was further enhanced by inclusion of CpG-ODN and cholera toxin in the lipid delivery system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy is a promising new treatment for patients with advanced prostate and ovarian cancer, but its application is limited by the lack of suitable target antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTL). Human kallikrein 4 (KLK4) is a member of the kallikrein family of serine proteases that is significantly overexpressed in malignant versus healthy prostate and ovarian tissue, making it an attractive target for immunotherapy. We identified a naturally processed, HLA-A*0201-restricted peptide epitope within the signal sequence region of KLK4 that induced CTL responses in vitro in most healthy donors and prostate cancer patients tested. These CTL lysed HLA-A*0201+ KLK4 + cell lines and KLK4 mRNA-transfected monocyte-derived dendritic cells. CTL specific for the HLA-A*0201-restricted KLK4 peptide were more readily expanded to a higher frequency in vitro compared to the known HLA-A*0201-restricted epitopes from prostate cancer antigens; prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP). These data demonstrate that KLK4 is an immunogenic molecule capable of inducing CTL responses and identify it as an attractive target for prostate and ovarian cancer immunotherapy.