984 resultados para Antígenos HLA-G
Resumo:
A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.
Resumo:
We have used a PCR-based technology to study the V beta 5 and V beta 17 repertoire of T-cell populations in HLA-DR2 multiple sclerosis (MS) patients. We have found that the five MS DR2 patients studied present, at the moment of diagnosis and prior to any treatment, a marked expansion of a CD4+ T-cell population bearing V beta 5-J beta 1.4 beta chains. The sequences of the complementarity-determining region 3 of the expanded T cells are highly homologous. One shares structural features with that of the T cells infiltrating the central nervous system and of myelin basic protein-reactive T cells found in HLA-DR2 MS patients. An homologous sequence was not detectable in MS patients expressing DR alleles other than DR2. However, it is detectable but not expanded in healthy DR2 individuals. The possible mechanisms leading to its in vivo proliferation at the onset of MS are discussed.
Resumo:
The class I major histocompatibility complex (MHC) glycoprotein HLA-B27 binds short peptides containing arginine at peptide position 2 (P2). The HLA-B27/peptide complex is recognized by T cells both as part of the development of the repertoire of T cells in the cellular immune system and during activation of cytotoxic T cells. Based on the three-dimensional structure of HLA-B27, we have synthesized a ligand with an aziridine-containing side chain designed to mimic arginine and to bind covalently in the arginine-specific P2 pocket of HLA-B27. Using tryptic digestion followed by mass spectrometry and amino acid sequencing, the aziridine-containing ligand is shown to alkylate specifically cysteine 67 of HLA-B27. Neither free cysteine in solution nor an exposed cysteine on a class II MHC molecule can be alkylated, showing that specific recognition between the anchor side-chain pocket of an MHC class I protein and the designed ligand (propinquity) is necessary to induce the selective covalent reaction with the MHC class I molecule.
Resumo:
The nonclassical major histocompatibility complex class II molecule HLA-DM (DM) has recently been shown to play a central role in the class II-associated antigen presentation pathway: DM releases invariant chain-derived CLIP peptides (class II-associated invariant chain protein peptide) from HLA-DR (DR) molecules and thereby facilitates loading with antigenic peptides. Some observations have led to the suggestion that DM acts in a catalytic manner, but so far direct proof is missing. Here, we investigated in vitro the kinetics of exchange of endogenously bound CLIP for various peptides on DR1 and DR2a molecules: we found that in the presence of DM the peptide loading process follows Michaelis-Menten kinetics with turnover numbers of 3-12 DR molecules per minute per DM molecule, and with KM values of 500-1000 nM. In addition, surface plasmon resonance measurements showed that DM interacts efficiently with DR-CLIP complexes but only weakly with DR-peptide complexes isolated from DM-positive cells. Taken together, our data provide evidence that DM functions as an enzyme-like catalyst of peptide exchange and favors the generation of long-lived DR-peptide complexes that are no longer substrates for DM.
Resumo:
Position 57 in the beta chain of HLA class II molecules maintains an Asp/non-Asp dimorphism that has been conserved through evolution and is implicated in susceptibility to some autoimmune diseases. The latter effect may be due to the influence of this residue on the ability of class II alleles to bind specific pathogenic peptides. We utilized highly homologous pairs of both DR and DQ alleles that varied at residue 57 to investigate the impact of this dimorphism on binding of model peptides. Using a direct binding assay of biotinylated peptides on whole cells expressing the desired alleles, we report several peptides that bind differentially to the allele pairs depending on the presence or absence of Asp at position 57. Peptides with negatively charged residues at anchor position 9 bind well to alleles not containing Asp at position 57 in the beta chain but cannot bind well to homologous Asp-positive alleles. By changing the peptides at the single residue predicted to interact with this position 57, we demonstrate a drastically altered or reversed pattern of binding. Ala analog peptides confirm these interactions and identify a limited set of interaction sites between the bound peptides and the class II molecules. Clarification of the impact of specific class II polymorphisms on generating unique allele-specific peptide binding "repertoires" will aid in our understanding of the development of specific immune responses and HLA-associated diseases.
Resumo:
The role of inflammatory T cells in Crohn's disease suggests that inherited variations in major histocompatibility complex (MHC) class II genes may be of pathogenetic importance in inflammatory bowel disease. The absence of consistent and strong associations with MHC class II genes in Caucasian patients with inflammatory bowel disease probably reflects the use of less precise typing approaches and the failure to type certain loci by any means. A PCR-sequence-specific oligonucleotide-based approach was used to type individual alleles of the HLA class II DRB1, DRB3, DRB4, and DRB5 loci in 40 patients with ulcerative colitis, 42 Crohn's disease patients, and 93 ethnically matched healthy controls. Detailed molecular typing of the above alleles has previously not been reported in patients with inflammatory bowel disease. A highly significant positive association with the HLA-DRB3*0301 allele was observed in patients with Crohn's disease (P = 0.0004) but not in patients with ulcerative colitis. The relative risk for this association was 7.04. Other less significant HLA class II associations were also noted in patients with Crohn's disease. One of these associations involved the HLA-DRB1*1302 allele, which is known to be in linkage disequilibrium with HLA-DRB3*0301. These data suggest that a single allele of an infrequently typed HLA class II locus is strongly associated with Crohn's disease and that MHC class II molecules may be important in its pathogenesis.
Resumo:
The structure of the human major histocompatibility complex (MHC) class II molecule HLA-DR1 derived from the human lymphoblastoid cell line LG-2 has been determined in a complex with the Staphylococcus aureus enterotoxin B superantigen. The HLA-DR1 molecule contains a mixture of endogenous peptides derived from cellular or serum proteins bound in the antigen-binding site, which copurify with the class II molecule. Continuous electron density for 13 amino acid residues is observed in the MHC peptide-binding site, suggesting that this is the core length of peptide that forms common interactions with the MHC molecule. Electron density is also observed for side chains of the endogenous peptides. The electron density corresponding to peptide side chains that interact with the DR1-binding site is more clearly defined than the electron density that extends out of the binding site. The regions of the endogenous peptides that interact with DRI are therefore either more restricted in conformation or sequence than the peptide side chains or amino acids that project out of the peptide-binding site. The hydrogen-bond interactions and conformation of a peptide model built into the electron density are similar to other HLA-DR-peptide structures. The bound peptides assume a regular conformation that is similar to a polyproline type II helix. The side-chain pockets and conserved asparagine residues of the DR1 molecule are well-positioned to interact with peptides in the polyproline type II conformation and may restrict the range of acceptable peptide conformations.
Resumo:
The invariant chain (Ii) prevents binding of ligands to major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum and during intracellular transport. Stepwise removal of the Ii in a trans-Golgi compartment renders MHC class II molecules accessible for peptide loading, with CLIP (class II-associated Ii peptides) as the final fragment to be released. Here we show that CLIP can be subdivided into distinct functional regions. The C-terminal segment (residues 92-105) of the CLIP-(81-105) fragment mediates inhibition of self- and antigenic peptide binding to HLA-DR2 molecules. In contrast, the N-terminal segment CLIP-(81-98) binds to the Staphylococcus aureus enterotoxin B contact site outside the peptide-binding groove on the alpha 1 domain and does not interfere with peptide binding. Its functional significance appears to lie in the contribution to CLIP removal: the dissociation of CLIP-(81-105) is characterized by a fast off-rate, which is accelerated at endosomal pH, whereas in the absence of the N-terminal CLIP-(81-91), the off-rate of C-terminal CLIP-(92-105) is slow and remains unaltered at low pH. Mechanistically, the N-terminal segment of CLIP seems to prevent tight interactions of CLIP side chains with specificity pockets in the peptide-binding groove that normally occurs during maturation of long-lived class II-peptide complexes.
Resumo:
To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.
Resumo:
A infecção por papilomavirus é a principal causa de desenvolvimento de neoplasias intraepiteliais cervicais (NIC) e câncer do colo do útero (CCU). Estudos epidemiológicos têm demonstrado que a persistência do genoma viral encontra-se associado a variantes moleculares específicas de papilomavirus humano (HPV) de alto risco. As moléculas HLA de classe II têm um importante papel na resposta imune. Associações entre HLA e CCU ou infecção por HPV tem sido demonstrado em diferentes populações. O nosso objetivo foi verificar se a variabilidade de HLA-DRB1 e DQB1 estavam associada ao CCU e NIC III em mulheres de Belém, uma população formada pelos 3 principais grupos étnicos humanos e uma área de alto risco para o CCU no Norte do Brasil. Foi investigada a existência de diferenças na distribuição de alelos HLA entre mulheres com CCU e NIC III portadoras de diferentes variantes de HPV-16 e mulheres citologicamente normais. Os genes HLA DQB1 e DRB1 foram tipados pelo método de PCR-SSO em 95 casos e 287 controles de mulheres com citologia normal atendidas em um centro de prevenção do colo do útero na mesma cidade. As variantes de HPV-16 foram tipadas por sequenciamento de um fragmento da região controladora do genoma viral (LCR). O polimorfismo na posição 350 do gene E6 foi tipado baseado em um protocolo de hibridização em pontos, para identificar a alteração na posição 350T→G. A magnitude das associações foi estimada por odds ratio (OR) e os respectivos intervalos de confiança (IC), ajustados para potenciais fatores de confusão. Uma associação positiva foi observada entre CCU e os haplótipos DRB1* 150 l-DQB1*0602, DRB1*04-DQB1*0301 e DRB1*1602-DQB1*0301. Ao contrário, DRB1*01-DQB1*0501 mostrou um efeito protetor. Os alelos DRB1*0804, DQB1*0402 apresentaram efeito protetor contra positividade por HPV. O alelo DQB1*0502 e o grupo DRB1*15 foram positivamente associados. Os nossos resultados mostram que as associações positivas de DRB1*1501 e DRB1*1602 podem ser atribuídas a variantes asiático-americanas quando comparado a variantes européias. O risco conferido a DRB1*1501 foi encontrado associado tanto a variantes E6350G quanto a variantes E6350T, entretanto, o maior efeito foi devido às variantes E6250T. A associação positiva de DRB1*1602 foi significativa somente no grupo de mulheres positivas para E6350G. Estes resultados estão de acordo com a composição étnica da população estudada bem como um maior potencial oncogênico de certas variantes. Nossos dados sugerem que a contribuição dos alelos HLA na susceptibilidade genética ao CCU difere de acordo com a distribuição das variantes de HPV em uma dada região geográfica ou grupo étnico.
Resumo:
Gametic selection during fertilization or the effects of specific genotypes on the viability of embryos may cause a skewed transmission of chromosomes to surviving offspring. A recent analysis of transmission distortion in humans reported significant excess sharing among full siblings. Dizygotic (DZ) twin pairs are a special case of the simultaneous survival of two genotypes, and there have been reports of DZ pairs with excess allele sharing around the HLA locus, a candidate locus for embryo survival. We performed an allele-sharing study of 1,592 DZ twin pairs from two independent Australian cohorts, of which 1,561 pairs were informative for linkage on chromosome 6. We also analyzed allele sharing in 336 DZ twin pairs from The Netherlands. We found no evidence of excess allele sharing, either at the HLA locus or in the rest of the genome. In contrast, we found evidence of a small but significant (P = .003 for the Australian sample) genomewide deficit in the proportion of two alleles shared identical by descent among DZ twin pairs. We reconciled conflicting evidence in the literature for excess genomewide allele sharing by performing a simulation study that shows how undetected genotyping errors can lead to an apparent deficit or excess of allele sharing among sibling pairs, dependent on whether parental genotypes are known. Our results imply that gene-mapping studies based on affected sibling pairs that include DZ pairs will not suffer from false-positive results due to loci involved in embryo survival.
Resumo:
BACKGROUND: Pretransplant anti-HLA donor-specific antibodies (DSA) are recognized as a risk factor for acute antibody-mediated rejection (AMR) in kidney transplantation. The predictive value of C4d-fixing capability by DSA or of IgG DSA subclasses for acute AMR in the pretransplant setting has been recently studied. In addition DSA strength assessed by mean fluorescence intensity (MFI) may improve risk stratification. We aimed to analyze the relevance of preformed DSA and of DSA MFI values. METHODS: 280 consecutive patients with negative complement-dependent cytotoxicity crossmatches received a kidney transplant between 01/2008 and 03/2014. Sera were screened for the presence of DSA with a solid-phase assays on a Luminex flow analyzer, and the results were correlated with biopsy-proven acute AMR in the first year and survival. RESULTS: Pretransplant anti-HLA antibodies were present in 72 patients (25.7%) and 24 (8.6%) had DSA. There were 46 (16.4%) acute rejection episodes, 32 (11.4%) being cellular and 14 (5.0%) AMR. The incidence of acute AMR was higher in patients with pretransplant DSA (41.7%) than in those without (1.6%) (p<0.001). The median cumulative MFI (cMFI) of the group DSA+/AMR+ was 5680 vs 2208 in DSA+/AMR- (p=0.058). With univariate logistic regression a threshold value of 5280 cMFI was predictive for acute AMR. DSA cMFI's ability to predict AMR was also explored by ROC analysis. AUC was 0.728 and the best threshold was a cMFI of 4340. Importantly pretransplant DSA>5280 cMFI had a detrimental effect on 5-year graft survival. CONCLUSIONS: Preformed DSA cMFI values were clinically-relevant for the prediction of acute AMR and graft survival in kidney transplantation. A threshold of 4300-5300 cMFI was a significant outcome predictor.
Resumo:
info:eu-repo/semantics/publishedVersion
Resumo:
info:eu-repo/semantics/publishedVersion
Resumo:
2015