981 resultados para Anisotropic Hardening


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of absorbed hydrogen on the mechanical behavior of a series of Ni-Nb-Zr amorphous metallic ribbons was investigated through nanoindentation experiments. It was revealed that the influence is significantly dependent on Zr content, that is, hydrogen induced softening in relatively low-Zr alloys, whereas hydrogen induced hardening in high-Zr alloys. The results are discussed in terms of the different roles of mobile and immobile hydrogen in the plastic deformation. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Martensite-ferrite microstructures were produced in four microalloyed steels A (Fe-0.44C-Cr-V), B (Fe-0.26C-Cr-V), C (Fe-0.34C-Cr-Ti-V), and D (Fe-0.23C-Cr-V) by intercritical annealing. SEM analysis reveals that steels A and C contained higher martensite fraction and finer ferrite when compared to steels B and D which contained coarser ferrite grains and lower martensite fraction. A network of martensite phase surrounding the ferrite grains was found in all the steels. Crystallographic texture was very weak in these steels as indicated by EBSD analysis. The steels contained negligible volume fraction of retained austenite (approx. 3-6%). TEM analysis revealed the presence of twinned and lath martensite in these steels along with ferrite. Precipitates (carbides and nitrides) of Ti and V of various shapes with few nanometers size were found, particularly in the microstructures of steel B. Work hardening behavior of these steels at ambient temperature was evaluated through modified Jaoul-Crussard analysis, and it was characterized by two stages due to presence of martensite and ferrite phases in their microstructure. Steel A displayed large work hardening among other steel compositions. Work hardening behavior of the steels at a warm working temperature of 540 A degrees C was characterized by a single stage due to the decomposition of martensite into ferrite and carbides at this temperature as indicated by SEM images of the steels after warm deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a system consisting of 5 dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically AdS(5) region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isometric fluctuation relation (IFR) P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)] relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely described by an anisotropic generalization of the IFR R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)], with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a kink on a curve in the plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, based on the principles of gauge/gravity duality we analytically compute the shear viscosity to entropy (eta/s) ratio corresponding to the super fluid phase in Einstein Gauss-Bonnet gravity. From our analysis we note that the ratio indeed receives a finite temperature correction below certain critical temperature (T < T-c). This proves the non universality of eta/s ratio in higher derivative theories of gravity. We also compute the upper bound for the Gauss-Bonnet coupling (lambda) corresponding to the symmetry broken phase and note that the upper bound on the coupling does not seem to change as long as we are close to the critical point of the phase diagram. However the corresponding lower bound of the eta/s ratio seems to get modified due to the finite temperature effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal desorption spectroscopy and nanoindentation techniques were employed to elucidate the key differences in the hydrogen (H) charging methods (electrochemical versus gaseous) and their consequences on the mechanical response of a low carbon steel. While electrochemical charging enhances the hardness, gaseous charging reduces it. This contrasting behavior is rationalized in terms of the dependency of the strength on the absorbed amount of H during charging and the H concentration gradient in the specimen. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the linear stability analysis of horizontal Poiseuille flow in a fluid overlying a porous medium with anisotropic and inhomogeneous permeability. The generalized Darcy model is used to describe the flow in the porous medium with the Beavers-Joseph condition at the interface of the two layers and the eigenvalue problem is solved numerically. The effect of major system parameters on the stability characteristics is addressed in detail. It is shown that the anisotropic and inhomogeneous modulation of the permeability of the underlying porous layer provides an effective means for passive control of the flow stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the canted magnetic state in Sr2IrO4 using fully relativistic density functional theory (DFT) including an on-site Hubbard U correction. A complete magnetic phase diagram with respect to the tetragonal distortion and the rotation of IrO6 octahedra is constructed, revealing the presence of two types of canted to collinear magnetic transitions: a spin-flop transition with increasing tetragonal distortion and a complete quenching of the basal weak ferromagnetic moment below a critical octahedral rotation. Moreover, we put forward a scheme to study the anisotropic magnetic couplings by mapping magnetically constrained noncollinear DFT onto a general spin Hamiltonian. This procedure allows for the simultaneous account and direct control of the lattice, spin, and orbital interactions within a fully ab initio scheme. We compute the isotropic, single site anisotropy and Dzyaloshinskii-Moriya (DM) coupling parameters, and clarify that the origin of the canted magnetic state in Sr2IrO4 arises from the structural distortions and the competition between isotropic exchange and DM interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been previously reported that the addition of boron to Ti-6Al-4V results in significant refinement of the as-cast microstructure and enhancement in the strain hardening. However, the mechanism for the latter effect has not been adequately studied. The aim of this study was to understand the reasons for the enhancement in room temperature strain hardening on addition of boron to as cast Ti-6Al-4V alloy. A study was conducted on slip transmission using SEM, TEM, optical profilometry and four point probe resistivity measurements on un-deformed and deformed samples of Ti-6Al-4V-xB with five levels of boron. Optical profilometry was used to quantify the magnitude of offsets on slip traces which in turn provided information about the extent of planar or multiple slip. Studies on deformed samples reveal that while lath boundaries appear to easily permit dislocation slip transmission, colony boundaries are potent barriers to slip. From TEM studies it was also observed that while alloys containing lower boron underwent planar slip, deformation was more homogeneous in higher boron alloys due to multiple slip resulting from large number of colony boundaries. Multiple slip is also proposed to be the prime cause of the enhanced strain hardening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum wires with spin-orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin-orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin-and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin-orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on self-assembly of anisotropically substituted penta-aryl fullerenes in water has been reported. The penta-phenol-substituted amphiphilic fullerene derivative C60Ph5(OH)(5)],exhibited self-assembled vesicular nanostructures in water under the experimental conditions. The size of the vesicles Was observed to depend upon the kinetics of self-assembly and could be varied from similar to 300 to similar to 70 nm. Our mechanistic study indicated that the self-assembly of C60Ph5(OH)(5) is driven by extensive intermolecular as well as water-mediated hydrogen :bonding along with fullerene-fullerene hydrophobic interaction in water. The cumulative effect of these interactions is responsible for the stability of vesicular structures even on the removal of solvent. The substitution of phenol with anisole resulted in different packing and interaction of the fullerene derivative, as Indicated in the molecular dynamics studies, thus resulting in different self-assembled nanostructures. The hollow vesicles were further encapsulated with a hydrophobic conjugated polymer and water-soluble dye as guest molecules. Such confinement of pi-conjugated polymers in fullerene has significance in bulk heterojunction devices for efficient exciton diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A meso material model for polycrystalline metals is proposed, in which the tiny slip systems distributing randomly between crystal slices in micro-grains or on grain boundaries are replaced by macro equivalent slip systems determined by the work-conjugate principle. The elastoplastic constitutive equation of this model is formulated for the active hardening, latent hardening and Bauschinger effect to predict macro elastoplastic stress-strain responses of polycrystalline metals under complex loading conditions. The influence of the material property parameters on size and shape of the subsequent yield surfaces is numerically investigated to demonstrate the fundamental features of the proposed material model. The derived constitutive equation is proved accurate and efficient in numerical analysis. Compared with the self-consistent theories with crystal grains as their basic components, the present theory is much simpler in mathematical treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dislocation theory of fracture criterion for the mixed dislocation emission and cleavage process in an anisotropic solid is developed in this paper. The complicated cases involving mixed-mode loading are considered here. The explicit formula for dislocations interaction with a semi-infinite crack is obtained. The governing equation for the critical condition of crack cleavage in an anisotropic solid after a number dislocation emissions is established. The effects of elastic anisotropy, crack geometry and load phase angle on the critical energy release rate and the total number of the emitted dislocations at the onset of cleavage are analysed in detail. The analyses revealed that the critical energy release rates can increase to one or two magnitudes larger than the surface energy because of the dislocation emission. It is also found elastic anisotropy and crystal orientation have significant effects on the critical energy release rates. The anisotropic values can be several times the isotropic value in one crack orientation. The values may be as much as 40% less than the isotropic value in another crack orientation and another anisotropy parameter. Then the theory is applied to a fee single crystal. An edge dislocation can emit from the crack tip along the most highly shear stressed slip plane. Crack cleavage can occur along the most highly stressed slip plane after a number of dislocation emissions. Calculation is carried out step by step. Each step we should judge by which slip system is the most highly shear stressed slip system and which slip system has the largest energy release rate. The calculation clearly shows that the crack orientation and the load phase angle have significant effects on the crystal brittle-ductile behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of electron beam surface hardening treatment on the microstructure and hardness of AISI D3 tool steel have been investigated in this paper. The results showed that the microstructure of the hardened layer consisted of martensite, a dispersion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution can be used for tensile and compressive loadings. This model was also developed into finite element code in explicit format, and the code was integrated into the well-known computational environment ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test for a rock sample is used to examine the performance of the proposed model, and the progressive failure process of the rock sample is unveiled.