955 resultados para Animal Models, Alcohol, Addiction, Rats, Acamprosate, Naltrexone
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To compare the efficacy of topiramate with naltrexone in the treatment of alcohol dependence. The investigation was a double-blind, placebo-controlled, 12-week study carried out at the University of Sao Paulo, Brazil. A total of 155 patients, 18-60 years of age, with an International Classification of Diseases (ICD-10) diagnosis of alcohol dependence. After a 1-week detoxification period, patients were assigned randomly to receive topiramate (induction to 300 mg/day), naltrexone (50 mg/day) or placebo. Time to first relapse (consumption of > 60 g ethyl alcohol), cumulative abstinence duration and weeks of heavy drinking. In intention-to-treat analyses, topiramate was statistically superior to placebo on a number of measures including time to first relapse (7.8 versus 5.0 weeks), cumulative abstinence duration (8.2 versus 5.6 weeks), weeks of heavy drinking (3.4 versus 5.9) and percentage of subjects abstinent at 4 weeks (67.3 versus 42.6) and 8 weeks (61.5 versus 31.5), but not 12 weeks (46.2 versus 27.8). Results remained significant after controlling for Alcoholics Anonymous attendance, which was higher in topiramate than in other groups. There were no significant differences between naltrexone versus placebo or naltrexone versus topiramate groups, but naltrexone showed trends toward inferior outcomes when compared to topiramate. The results of this study support the efficacy of topiramate in the relapse prevention of alcoholism. Suggestive evidence was also obtained for superiority of topiramate versus naltrexone, but this needs to be verified in future research with larger sample sizes.
Resumo:
We investigated the effect of acute oral treatment with a water-alcohol extract of the inflorescence of Erythrina mulungu (EM, Leguminosae-Papilionaceae) (100, 200 and 400 mg/kg) on rats submitted to different anxiety models: the elevated T-maze (for inhibitory avoidance and escape measurements), the light/dark transition, and the cat odor test. These models were selected for their presumed capacity to demonstrate specific subtypes of anxiety disorders as recognized in clinical practice. Treatment with 200 mg/kg EM impaired avoidance latencies (avoidance 1 - 200 mg/kg EM: 18 ± 7 s, control group: 40 ± 9 s; avoidance 2 - 200 mg/kg EM: 15 ± 4 s, control group: 110.33 ± 38 s) in a way similar to the reference drug diazepam (avoidance 1: 3 ± 0.79 s; avoidance 2: 3 ± 0.76 s), without altering escape. Additionally, the same treatments increased the number of transitions (200 mg/kg EM: 6.33 ± 0.90, diazepam: 10 ± 1.54, control group: 2.78 ± 0.60) between the two compartments and the time spent in the lighted compartment in the light/dark transition model (200 mg/kg EM: 39 ± 7 s; diazepam: 61 ± 9 s; control group: 14 ± 4 s). The dose of 400 mg/kg EM also increased this last measurement (38 ± 8 s). These results were not due to motor alterations since no significant effects were detected in the number of crossings or rearings in the arena. Furthermore, neither EM nor diazepam altered the behavioral responses of rats to a cloth impregnated with cat odor. These observations suggest that EM exerts anxiolytic-like effects on a specific subset of defensive behaviors, particularly those that have been shown to be sensitive to low doses of benzodiazepines.
Resumo:
The relationship between anxiety-related behaviors and voluntary ethanol intake was examined in two pairs of rat lines by the oral ethanol self-administration procedure. Floripa high (H) and low (L) rats selectively bred for contrasting anxiety responses in the open-field test, and two inbred strains, spontaneously hypertensive rats (SHR) and Lewis rats which are known to differ significantly when submitted to several behavioral tests of anxiety/emotionality, were used (9-10 animals/line/sex). No differences in the choice of ethanol solutions (2%, days 1-4, and 4%, days 5-8, respectively) in a 2-bottle paradigm were detected between Floripa H and L rats (1.94 ± 0.37 vs 1.61 ± 0.37 g/kg for ethanol intake on day 8 by the Floripa H and L rat lines, respectively). Contrary to expectations, the less anxious SHR rats consumed significantly more ethanol than Lewis rats (respective intake of 2.30 ± 0.45 and 0.72 ± 0.33 g/kg on day 8) which are known to be both addiction-prone and highly anxious. Regardless of strain, female rats consumed more ethanol than males (approximately 46%). The results showed no relationship between high anxiety and voluntary intake of ethanol for Floripa H and L rats. A negative association between these two variables, however, was found for SHR and Lewis rat strains. Data from the literature regarding the association between anxiety and alcohol intake in animal models are not conclusive, but the present results indicate that factors other than increased inborn anxiety probably lead to the individual differences in ethanol drinking behavior.
Resumo:
Pregnant women have a 2-3 fold higher probability of developing restless legs syndrome (RLS - sleep-related movement disorders) than general population. This study aims to evaluate the behavior and locomotion of rats during pregnancy in order to verify if part of these animals exhibit some RLS-like features. We used 14 female 80-day-old Wistar rats that weighed between 200 and 250 g. The rats were distributed into control (CTRL) and pregnant (PN) groups. After a baseline evaluation of their behavior and locomotor activity in an open-field environment, the PN group was inducted into pregnancy, and their behavior and locomotor activity were evaluated on days 3, 10 and 19 of pregnancy and in the post-lactation period in parallel with the CTRL group. The serum iron and transferrin levels in the CTRL and PN groups were analyzed in blood collected after euthanasia by decapitation. There were no significant differences in the total ambulation, grooming events, fecal boli or urine pools between the CTRL and PN groups. However, the PN group exhibited fewer rearing events, increased grooming time and reduced immobilization time than the CTRL group (ANOVA, p<0.05). These results suggest that pregnant rats show behavioral and locomotor alterations similar to those observed in animal models of RLS, demonstrating to be a possible animal model of this sleep disorder.
Resumo:
Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPAR alpha and PPAR gamma, and plasma insulin-like growth factor 1 IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPAR gamma protein, not PPAR alpha, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. J. Nutr. 141: 1049-1055, 2011.
Resumo:
The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).
Resumo:
Rationale Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. Objective The major aims were to investigate the pharmacokineticsa and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. Methods Mephedrone was administered to male SpragueDawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180240 min. Results Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α=10.23 h−1, β=1.86 h−1). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10 % and the percentage of mephedrone protein binding was 21.59±3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85±0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokineticpharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. Conclusions We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude,and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity.
Resumo:
Rationale Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. Objective The major aims were to investigate the pharmacokineticsa and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. Methods Mephedrone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. Results Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α=10.23 h−1, β=1.86 h−1). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10 % and the percentage of mephedrone protein binding was 21.59±3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85±0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokinetic-pharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. Conclusions We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude,and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity.
Resumo:
PURPOSE:Pregnant women have a 2-3 fold higher probability of developing restless legs syndrome (RLS – sleep-related movement disorders) than general population. This study aims to evaluate the behavior and locomotion of rats during pregnancy in order to verify if part of these animals exhibit some RLS-like features.METHODS:We used 14 female 80-day-old Wistar rats that weighed between 200 and 250 g. The rats were distributed into control (CTRL) and pregnant (PN) groups. After a baseline evaluation of their behavior and locomotor activity in an open-field environment, the PN group was inducted into pregnancy, and their behavior and locomotor activity were evaluated on days 3, 10 and 19 of pregnancy and in the post-lactation period in parallel with the CTRL group. The serum iron and transferrin levels in the CTRL and PN groups were analyzed in blood collected after euthanasia by decapitation.RESULTS:There were no significant differences in the total ambulation, grooming events, fecal boli or urine pools between the CTRL and PN groups. However, the PN group exhibited fewer rearing events, increased grooming time and reduced immobilization time than the CTRL group (ANOVA, p<0.05).CONCLUSION:These results suggest that pregnant rats show behavioral and locomotor alterations similar to those observed in animal models of RLS, demonstrating to be a possible animal model of this sleep disorder.
Resumo:
Local anesthetic efficacy of tramadol has been reported following intradermal application. Our aim was to investigate the effect of perineural tramadol as the sole analgesic in two pain models. Male Wistar rats (280-380 g; N = 5/group) were used in these experiments. A neurostimulation-guided sciatic nerve block was performed and 2% lidocaine or tramadol (1.25 and 5 mg) was perineurally injected in two different animal pain models. In the flinching behavior test, the number of flinches was evaluated and in the plantar incision model, mechanical and heat thresholds were measured. Motor effects of lidocaine and tramadol were quantified and a motor block score elaborated. Tramadol, 1.25 mg, completely blocked the first and reduced the second phase of the flinching behavior test. In the plantar incision model, tramadol (1.25 mg) increased both paw withdrawal latency in response to radiant heat (8.3 ± 1.1, 12.7 ± 1.8, 8.4 ± 0.8, and 11.1 ± 3.3 s) and mechanical threshold in response to von Frey filaments (459 ± 82.8, 447.5 ± 91.7, 320.1 ± 120, 126.43 ± 92.8 mN) at 5, 15, 30, and 60 min, respectively. Sham block or contralateral sciatic nerve block did not differ from perineural saline injection throughout the study in either model. The effect of tramadol was not antagonized by intraperitoneal naloxone. High dose tramadol (5 mg) blocked motor function as well as 2% lidocaine. In conclusion, tramadol blocks nociception and motor function in vivo similar to local anesthetics.
Resumo:
The developmental remodelling of motivational systems that underlie drug dependence and addiction may account for the greater frequency and severity of drug abuse in adolescence compared to adulthood. Recent advances in animal models have begun to identify the morphological and the molecular factors that are being remodelled, but little is known about the culmination of these factors in altered sensitivity to psycho stimulant drugs, like amphetamine, in adolescence. Amphetamine induces potent locomotor activating effects in rodents through increased dopamine release in the mesocorticolimbic dopamine system, which makes locomotor activity a useful behavioural marker of age differences in amphetamine sensitivity. The aim of the thesis was to investigate the neural basis for age differences in amphetamine sensitivity with a focus on the nucleus accumbens and the medial prefrontal cortex, which initiate and regulate amphetamine-induced locomotor activity, respectively. In study 1, I found pre- and post- pubertal adolescent rats to be less active (i.e., hypoactive) than adults to a first injection of 0.5, but not of 1.5, mg/kg of intraperitonealy (i.p.) administered amphetamine. Although initially hypoactive, only adolescent rats exhibited an increase in activity to a second injection of amphetamine given 24 h later, indicating that adolescents may be more sensitive to the rapid changes in amphetamineinduced plasticity than adults. Given that the locomotor activating effects of amphetamine are initiated in the nucleus accumbens, age differences in response to direct injections of amphetamine into this brain region were investigated in study 2. In contrast to i.p. injections, adolescents were more active than adults when amphetamine was given directly into the nucleus accumbens, indicating that hypo activity may be attributed to the development of regulatory regions outside of the accumbens. The medial prefrontal cortex (mPFC) is a key regulator of the locomotor activating effects of amphetamine that undergoes extensive remodelling in adolescence. In study 3, I found that an i.p. injection of 1.5, and not of 0.5, mg/kg of amphetamine resulted in a high expression of c-fos, a marker of neural activation, in the pre limbic mPFC only in pre-pubertal adolescent rats. This finding suggests that the ability of adolescent rats to overcome hypo activity at the 1.5 mg/kg dose may involve greater activation of the prelimbic mPFC compared to adulthood. In support of this hypothesis, I found that pharmacological inhibition of prelimbic D 1 dopamine receptors disrupted the locomotor activating effects of the 1.5 mg/kg dose of amphetamine to a greater extent in adolescent than in adult rats. In addition, the stimulation of prelimbic D 1 dopamine receptors potentiated locomotor activity at the 0.5 mg/kg dose of amphetamine only in adolescent rats, indicating that the prelimbic D1 dopamine receptors are involved in overcoming locomotor hypoactivity during adolescence. Given my finding that the locomotor activating effects of amphetamine rely on slightly different mechanisms in adolescence than in adulthood, study 4 was designed to determine whether the lasting consequences of drug use would also differ with age. A short period of pre-treatment with 0.5 mg/kg of amphetamine in adolescence, but not in adulthood, resulted in heightened sensitivity to an injection of amphetamine given 30 days after the start of the procedure, when adolescent rats had reached adulthood. The finding of an age-specific increase in amphetamine sensitivity is consistent with evidence for increased risk for addiction when drug use is initiated in adolescence compared to adulthood in people (Merline et aI., 2002), and with the hypothesis that adolescence is a sensitive period of development.
Resumo:
Purpose: To elaborate an experimental model of pulmonary carcinogenesis in Wistar rats. Methods: Male Rattus norvegicus albinus, Wistar lineage was carried through an intra-pulmonary instillation of the Benzo[a]pyrene (B[a]P) dilution in alcohol 70%, a polycyclic aromatic hydrocarbon widely known by its power of tumoral induction. Three experimental groups had been formed with 08 animals each: Control Group (Alcohol 70%); B[a]P Group 10 mg/kg; e B[a]P Group 20mg/ kg, submitted to euthanasia 08, 10, 12 and 14 weeks after the experimental procedure. The pulmonary sections had been colored by hematoxilin-eosin (HE) and submitted to the morphometrical analysis to describe the tissue alterations. Results: The presence of diffuse inflammatory alterations was observed in all groups, however, at the analysis of the pulmonary tissue of the experimental groups, it had been observed hyperplasic alterations (BALT hyperplasia), and in one of the animals of the experimental group 20mg/kg (12 weeks), it was noticed the presence of cellular epithelial tracheal pleomorphism, suggesting the adenocarcinoma formation in situ. Conclusion: The main secondary alterations to the intra-pulmonary instillation of B[a]P in Wistar rats were: cellular proliferation, inflammatory alterations of several degrees and nodular lymphoid hyperplasias. The association of an activator agent of the pulmonary metabolic reply is necessary to establish the ideal reply-dose to the development of the lung cancer.
Resumo:
Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism. Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15′-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9′10′-monooxygenase 2 (CMO2). CMO1 has been shown to be regulated by several transcription factors, such as the PPAR, retinoid X receptor, and thyroid receptor (TR). The regulation of CMO2 has yet to be identified. The impact of chronic alcohol intake on hepatic expressions of CMO1 and CMO2 and their related transcription factors are unknown. In this study, Fischer 344 rats were pair-fed either a liquid ethanol Lieber-DeCarli diet (n = 10) or a control diet (n = 10) for 11 wk. Hepatic retinoid concentration and expressions of CMO1, CMO2, PPARγ, PPARα, and TRβ as well as plasma thyroid hormones levels were analyzed. We observed that administering alcohol decreased hepatic retinoid levels but increased mRNA concentrations of CMO1, CMO2, PPARγ, PPARα, and TRβ and upregulated protein levels of CMO2, PPARγ, and PPARα. There was a positive correlation of PPARγ with CMO1(r = 0.89; P<0.0001) and both PPARγ and PPARα with CMO2 (r = 0.72, P< 0.001 and r = 0.62, P< 0.01, respectively). Plasma thyroid hormone concentrations did not differ between the control rats and alcohol-fed rats. This study suggests that chronic alcohol intake significantly upregulates hepatic expression of CMO1 and, to a much lesser extent, CMO2. This process may be due to alcohol-induced PPARγ expression and lower vitamin A status in the liver. © 2010 American Society for Nutrition.
Resumo:
Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPARα and PPARγ, and plasma insulin-like growth factor 1 (IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPARγ protein, not PPARα, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. © 2011 American Society for Nutrition.