993 resultados para Anatomical brain connectivity
Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity.
Resumo:
Spatial patterns of coherent activity across different brain areas have been identified during the resting-state fluctuations of the brain. However, recent studies indicate that resting-state activity is not stationary, but shows complex temporal dynamics. We were interested in the spatiotemporal dynamics of the phase interactions among resting-state fMRI BOLD signals from human subjects. We found that the global phase synchrony of the BOLD signals evolves on a characteristic ultra-slow (<0.01Hz) time scale, and that its temporal variations reflect the transient formation and dissolution of multiple communities of synchronized brain regions. Synchronized communities reoccurred intermittently in time and across scanning sessions. We found that the synchronization communities relate to previously defined functional networks known to be engaged in sensory-motor or cognitive function, called resting-state networks (RSNs), including the default mode network, the somato-motor network, the visual network, the auditory network, the cognitive control networks, the self-referential network, and combinations of these and other RSNs. We studied the mechanism originating the observed spatiotemporal synchronization dynamics by using a network model of phase oscillators connected through the brain's anatomical connectivity estimated using diffusion imaging human data. The model consistently approximates the temporal and spatial synchronization patterns of the empirical data, and reveals that multiple clusters that transiently synchronize and desynchronize emerge from the complex topology of anatomical connections, provided that oscillators are heterogeneous.
Resumo:
The aim of this work was to study the distribution and cellular localization of GLUT2 in the rat brain by light and electron microscopic immunohistochemistry, whereas our ultrastructural observations will be reported in a second paper. Confirming previous results, we show that GLUT2-immunoreactive profiles are present throughout the brain, especially in the limbic areas and related nuclei, whereas they appear most concentrated in the ventral and medial regions close to the midline. Using cresyl violet counterstaining and double immunohistochemical staining for glial or neuronal markers (GFAp, CAII and NeuN), we show that two limited populations of oligodendrocytes and astrocytes cell bodies and processes are immunoreactive for GLUT2, whereas a cross-reaction with GLUT1 cannot be ruled out. In addition, we report that the nerve cell bodies clearly immunostained for GLUT2 were scarce (although numerous in the dentate gyrus granular layer in particular), whereas the periphery of numerous nerve cells appeared labeled for this transporter. The latter were clustered in the dorsal endopiriform nucleus and neighboring temporal and perirhinal cortex, in the dorsal amygdaloid region, and in the paraventricular and reuniens thalamic nuclei, whereas they were only a few in the hypothalamus. Moreover, a group of GLUT2-immunoreactive nerve cell bodies was localized in the dorsal medulla oblongata while some large multipolar nerve cell bodies peripherally labeled for GLUT2 were scattered in the caudal ventral reticular formation. This anatomical localization of GLUT2 appears characteristic and different from that reported for the neuronal transporter GLUT3 and GLUT4. Indeed, the possibility that GLUT2 may be localized in the sub-plasmalemnal region of neurones and/or in afferent nerve fibres remains to be confirmed by ultrastructural observations. Because of the neuronal localization of GLUT2, and of its distribution relatively similar to glucokinase, it may be hypothesized that this transporter is, at least partially, involved in cerebral glucose sensing.
Resumo:
The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures-search information and path transitivity-which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways.
Resumo:
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Resumo:
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
Resumo:
Using combined emotional stimuli, combining photos of faces and recording of voices, we investigated the neural dynamics of emotional judgment using scalp EEG recordings. Stimuli could be either combioned in a congruent, or a non-congruent way.. As many evidences show the major role of alpha in emotional processing, the alpha band was subjected to be analyzed. Analysis was performed by computing the synchronization of the EEGs and the conditions congruent vs. non-congruent were compared using statistical tools. The obtained results demonstrate that scalp EEG ccould be used as a tool to investigate the neural dynamics of emotional valence and discriminate various emotions (angry, happy and neutral stimuli).
Resumo:
Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.
Resumo:
Behavioral consequences of a brain insult represent an interaction between the injury and the capacity of the rest of the brain to adapt to it. We provide experimental support for the notion that genetic factors play a critical role in such adaptation. We induced a controlled brain disruption using repetitive transcranial magnetic stimulation (rTMS) and show that APOE status determines its impact on distributed brain networks as assessed by functional MRI (fMRI).Twenty non-demented elders exhibiting mild memory dysfunction underwent two fMRI studies during face-name encoding tasks (before and after rTMS). Baseline task performance was associated with activation of a network of brain regions in prefrontal, parietal, medial temporal and visual associative areas. APOE ε4 bearers exhibited this pattern in two separate independent components, whereas ε4-non carriers presented a single partially overlapping network. Following rTMS all subjects showed slight ameliorations in memory performance, regardless of APOE status. However, after rTMS APOE ε4-carriers showed significant changes in brain network activation, expressing strikingly similar spatial configuration as the one observed in the non-carrier group prior to stimulation. Similarly, activity in areas of the default-mode network (DMN) was found in a single component among the ε4-non bearers, whereas among carriers it appeared disaggregated in three distinct spatiotemporal components that changed to an integrated single component after rTMS. Our findings demonstrate that genetic background play a fundamental role in the brain responses to focal insults, conditioning expression of distinct brain networks to sustain similar cognitive performance.
Resumo:
Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity. Hum Brain Mapp 36:1728-1740, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.
Resumo:
An assortment of human behaviors is thought to be driven by rewards including reinforcement learning, novelty processing, learning, decision making, economic choice, incentive motivation, and addiction. In each case the ventral tegmental area/ventral striatum (nucleus accumbens) (VTAVS) system has been implicated as a key structure by functional imaging studies, mostly on the basis of standard, univariate analyses. Here we propose that standard functional magnetic resonance imaging analysis needs to be complemented by methods that take into account the differential connectivity of the VTAVS system in the different behavioral contexts in order to describe reward based processes more appropriately. We fi rst consider the wider network for reward processing as it emerged from animal experimentation. Subsequently, an example for a method to assess functional connectivity is given. Finally, we illustrate the usefulness of such analyses by examples regarding reward valuation, reward expectation and the role of reward in addiction.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether patients with MDD show distributed changes in functional connectivity with a set of independently derived brain networks that have shown high correspondence with different task demands, including stimulus salience and emotional processing. We further explored if connectivity during emotional word processing related to the tendency to engage in positive or negative emotional states. In this study, 25 medication-free MDD patients without current or past comorbidity and matched controls (n=25) performed an emotional word-evaluation task during functional MRI. Using a dual regression approach, individual spatial connectivity maps representing each subject’s connectivity with each standard network were used to evaluate between-group differences and effects of positive and negative emotionality (extraversion and neuroticism, respectively, as measured with the NEO-FFI). Results showed decreased functional connectivity of the medial prefrontal cortex, ventrolateral prefrontal cortex, and ventral striatum with the fronto-opercular salience network in MDD patients compared to controls. In patients, abnormal connectivity was related to extraversion, but not neuroticism. These results confirm the hypothesis of a relative (para)limbic-cortical decoupling that may explain dysregulated affect in MDD. As connectivity of these regions with the salience network was related to extraversion, but not to general depression severity or negative emotionality, dysfunction of this network may be responsible for the failure to sustain engagement in rewarding behavior.
Resumo:
The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity.
Resumo:
Argomento del presente lavoro è l’analisi di dati fMRI (functional Magnetic Resonance Imaging) nell’ambito di uno studio EEG-fMRI su pazienti affetti da malattia di Parkinson idiopatica. L’EEG-fMRI combina due diverse tecniche per lo studio in vivo dell’attività cerebrale: l'elettroencefalografia (EEG) e la risonanza magnetica funzionale. La prima registra l’attività elettrica dei neuroni corticali con ottima risoluzione temporale; la seconda misura indirettamente l’attività neuronale registrando gli effetti metabolici ad essa correlati, con buona risoluzione spaziale. L’acquisizione simultanea e la combinazione dei due tipi di dati permettono di sfruttare i vantaggi di ciascuna tecnica. Scopo dello studio è l’indagine della connettività funzionale cerebrale in condizioni di riposo in pazienti con malattia di Parkinson idiopatica ad uno stadio precoce. In particolare, l’interesse è focalizzato sulle variazioni della connettività con aree motorie primarie e supplementari in seguito alla somministrazione della terapia dopaminergica. Le quattro fasi principali dell’analisi dei dati sono la correzione del rumore fisiologico, il pre-processing usuale dei dati fMRI, l’analisi di connettività “seed-based “ e la combinazione dei dati relativi ad ogni paziente in un’analisi statistica di gruppo. Usando ’elettrocardiogramma misurato contestualmente all’EEG ed una stima dell’attività respiratoria, è stata effettuata la correzione del rumore fisiologico, ottenendo risultati consistenti con la letteratura. L’analisi di connettività fMRI ha mostrato un aumento significativo della connettività dopo la somministrazione della terapia: in particolare, si è riscontrato che le aree cerebrali maggiormente connesse alle aree motorie sono quelle coinvolte nel network sensorimotorio, nel network attentivo e nel default mode network. Questi risultati suggeriscono che la terapia dopaminergica, oltre ad avere un effetto positivo sulle performance motorie durante l’esecuzione del movimento, inizia ad agire anche in condizioni di riposo, migliorando le funzioni attentive ed esecutive, componenti integranti della fase preparatoria del movimento. Nel prossimo futuro questi risultati verranno combinati con quelli ottenuti dall’analisi dei dati EEG.