96 resultados para Anaplasma
Resumo:
BACKGROUND: Due to climate changes during the last decades, ticks have progressively spread into higher latitudes in northern Europe. Although some tick borne diseases are known to be endemic in Finland, to date there is limited information with regard to the prevalence of these infections in companion animals. We determined the antibody and DNA prevalence of the following organisms in randomly selected client-owned and clinically healthy hunting dogs living in Finland: Ehrlichia canis (Ec), Anaplasma phagocytophilum (Ap), Borrelia burgdorferi (Bb) and Bartonella. METHODS: Anti-Ap, -Bb and -Ec antibodies were determined in 340 Finnish pet dogs and 50 healthy hunting dogs using the 4DX Snap(R)Test (IDEXX Laboratories). In addition, PCRs for the detection of Ap and Bartonella DNA were performed. Univariate and multivariate logistic regression analyses were used to identify risk factors associated with seropositivity to a vector borne agent. RESULTS: The overall seroprevalence was highest for Ap (5.3%), followed by Bb (2.9%), and Ec (0.3%). Seropositivities to Ap and Bb were significantly higher in the Aland Islands (p <0.001), with prevalence of Ap and Bb antibodies of 45 and 20%, respectively. In healthy hunting dogs, seropositivity rates of 4% (2/50) and 2% (1/50) were recorded for Ap and Bb, respectively. One client-owned dog and one hunting dog, both healthy, were infected with Ap as determined by PCR, while being seronegative. For Bartonella spp., none of the dogs tested was positive by PCR. CONCLUSIONS: This study represents the first data of seroprevalence to tick borne diseases in the Finnish dog population. Our results indicate that dogs in Finland are exposed to vector borne diseases, with Ap being the most seroprevalent of the diseases tested, followed by Bb. Almost 50% of dogs living in Aland Islands were Ap seropositive. This finding suggests the possibility of a high incidence of Ap infection in humans in this region. Knowing the distribution of seroprevalence in dogs may help predict the pattern of a tick borne disease and may aid in diagnostic and prevention efforts.
Resumo:
Ehrlichiae are responsible for important tick-transmitted diseases, including anaplasmosis, the most prevalent tick-borne infection of livestock worldwide, and the emerging human diseases monocytic and granulocytic ehrlichiosis. Antigenic variation of major surface proteins is a key feature of these pathogens that allows persistence in the mammalian host, a requisite for subsequent tick transmission. In Anaplasma marginale pseudogenes for two antigenically variable gene families, msp2 and msp3, appear in concert. These pseudogenes can be recombined into the functional expression site to generate new antigenic variants. Coordinated control of the recombination of these genes would allow these two gene families to act synergistically to evade the host immune response.
Resumo:
The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximate to 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microphis, and the B. microphis-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick.
Resumo:
Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance.
Resumo:
To identify DNA of the main tick-borne pathogens in dogs from Recife (Brazil), polymerase chain reactions were carried out on blood samples of dogs treated at the Veterinary Hospital of the Universidade Federal Rural de Pernambuco from March 2007 to June 2008. The detection of DNA was performed using specific primers. Amplicons were analyzed through electrophoresis and sequencing. A phylogenetic tree was constructed using the UPGMA method, revealing that the sequences were closely related to those of strains from other geographic regions. Among the 205 blood samples analyzed, 48.78% was positive for Anaplasma platys; 38.04% was positive for Ehrlichia canis; 7.31% was positive for Babesia canis vogeli; and 0.49% was positive for Hepatozoon canis and Mycoplasma haemocanis. Coinfection of two or three pathogens was found in 23.9% (49/205) of the dogs. The subspecies B. canis vogeli was identified. Infection by H. canis and M. haemocanis is reported for the first time in dogs in the state of Pernambuco (Brazil). The data indicate that the main tick-borne pathogens in dogs in this region are E. canis and/or A. platys, followed by B. canis vogeli.
Resumo:
Nel periodo compreso tra il 2019 e il 2022 sono state testate differenti matrici biologiche di carnivori domestici e selvatici provenienti dall’Italia e da altri Paesi europei (Norvegia, Romania). Diversi saggi molecolari, tra cui real-time PCR, end-point PCR, semi-nested PCR, retrotrascrizione e rolling circle amplification, sono stati utilizzati per ricercare il DNA o l’RNA genomico di virus e batteri. Il sequenziamento dell’intero genoma o di geni informativi dei patogeni identificati ne ha inoltre consentito la caratterizzazione genetica e l’analisi filogenetica. Gli studi, svolti presso il Dipartimento di Scienze Mediche Veterinarie dell’Università di Bologna, erano focalizzati nei confronti di alcuni virus a DNA, come Carnivore protoparvovirus 1 in lupi dall’appennino italiano e cani dalla Romania, adenovirus canino di tipo 1 e 2 in cani e lupi provenienti dal territorio nazionale, circovirus canino in cani e lupi italiani e volpi rosse e artiche della Norvegia; virus a RNA, come il canine distemper virus in faine recuperate nel territorio italiano e il calicivirus felino in gatti con diagnosi di poliartrite; e batteri appartenenti alla specie Anaplasma phagocytophilum in gatti deceduti e sottoposti a necroscopia in Italia. Dai risultati ottenuti è emerso che gli agenti infettivi indagati circolano nelle popolazioni di carnivori domestici e selvatici in forma asintomatica o determinando talvolta sintomatologia clinica. In alcuni animali testati è stata rilevata la coinfezione con diversi agenti patogeni, condizione che può predisporre ad un aggravamento della sintomatologia clinica. Dall’analisi filogenetica sono emerse relazioni tra gli agenti infettivi rilevati nelle differenti specie animali suggerendone la trasmissione tra ospiti domestici e selvatici e confermando il ruolo epidemiologico svolto dei carnivori selvatici nel mantenimento dei patogeni nel territorio. Alla luce dei dati ottenuti, è importante sottolineare l’importanza delle misure di profilassi, in particolare la vaccinazione degli animali da compagnia, per ridurre la trasmissione e la diffusione degli agenti infettivi.