856 resultados para Amylolytic enzyme activity in enzyme units
Resumo:
Bone marrow and peripheral blood leukocytes from 19 leukemia patients were found to contain telomerase activity detectable by a PCR-based assay. Telomerase was also detectable in nonmalignant bone marrow and peripheral blood leukocytes from normal donors, including fractions enriched for granulocytes, T lymphocytes, and monocytes/B cells. Semiquantitative comparison revealed considerable overlap between telomerase activities in samples from normal subjects and leukemia patients, confounding evaluation of the role of telomerase in this disease. These data indicate that human telomerase is not restricted to immortal cells and suggest that the somatic expression of this enzyme may be more widespread than was previously inferred from the decline of human telomeres.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
Background - Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxidase (NOX) enzyme and antioxidant enzyme systems in murine adenocarcinoma tumour-bearing cachectic mice. Methods - Superoxide levels, mRNA levels of NOX enzyme subunits and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidise (GPx) and catalase was measured in the skeletal muscle of mice with cancer and cancer cachexia. Protein expression levels of NOX enzyme subunits and antioxidant enzyme activity was also measured in the same muscle samples. Results - Superoxide levels increased 1.4-fold in the muscle of mice with cancer cachexia, and this was associated with a decrease in mRNA of NOX enzyme subunits, NOX2, p40phox and p67phox along with the antioxidant enzymes SOD1, SOD2 and GPx. Cancer cachexia was also associated with a 1.3-fold decrease in SOD1 and 2.0-fold decrease in GPx enzyme activity. Conclusion - Despite increased superoxide levels in cachectic skeletal muscle, NOX enzyme subunits, NOX2, p40phox and p67phox, were downregulated along with the expression and activity of the antioxidant enzymes. Therefore, the increased superoxide levels in cachectic skeletal muscle may be attributed to the reduction in the activity of endogenous antioxidant enzymes.
Resumo:
The main purpose of this pilot study was to investigate the possible influence of genetic polymorphisms of the hOGG1 (Ser326Cys) gene in DNA damage and repair activity by 8-oxoguanine DNA glycosylase 1 (OGG1 enzyme) in response to 16 weeks of combined physical exercise training. Thirty-two healthy Caucasian men (40-74 years old) were enrolled in this study. All the subjects were submitted to a training of 16 weeks of combined physical exercise. The subjects with Ser/Ser genotype were considered as wild-type group (WTG), and Ser/Cys and Cys/Cys genotype were analysed together as mutant group (MG). We used comet assay in conjunction with formamidopyrimidine DNA glycoslyase (FPG) to analyse both strand breaks and FPG-sensitive sites. DNA repair activity were also analysed with the comet assay technique. Our results showed no differences between DNA damage (both strand breaks and FPG-sensitive sites) and repair activity (OGG1) between genotype groups (in the pre-training condition). Regarding the possible influence of genotype in the response to 16 weeks of physical exercise training, the results revealed a decrease in DNA strand breaks in both groups, a decrease in FPG-sensitive sites and an increase in total antioxidant capacity in the WTG, but no changes were found in MG. No significant changes in DNA repair activity was observed in both genotype groups with physical exercise training. This preliminary study suggests the possibility of different responses in DNA damage to the physical exercise training, considering the hOGG1 Ser326Cys polymorphism.
Resumo:
Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2014
Resumo:
Aims and objectives This study sought to determine the relationship between health related quality of life (HRQoL), fatigue and activity levels of people with anaemia secondary to chronic kidney disease (CKD) over a 12 month period following the introduction of an erythropoietin stimulating agent (ESA). Background CKD occurs in five stages and it is a complex chronic illness which severely impacts on an individual’s HRQoL, and ability to perform everyday activities. Fatigue is also a common symptom experienced by people with CKD. Design and methods Using a longitudinal repeated measures design, 28 people with CKD completed the SF-36, human activity profile and fatigue severity scale at the commencement of an ESA and then at 3, 6 and 12 months. Results Over a 12 month period, people reported a significant change in HRQoL in relation to role physical, vitality, mental health/emotional well-being and overall mental health. However activity levels did not significantly improve during that time. Both the amount of breathlessness and level of fatigue were highest at baseline and declined over time. Both fatigue and breathlessness were correlated with less reported general health over time. Conclusion Renal nurses, in dialysis units and CKD outpatient clinics, have repeated and frequent contact with people with CKD over long periods of time, and are in an ideal position to routinely assess fatigue and activity levels and to institute timely interventions. Early detection would enable timely nursing interventions to optimise HRQoL and independent activity. Relevance to Clinical Practice Drawing on rehabilitation nursing interventions could assist renal nurses to minimize the burden of fatigue and its impact on simple everyday activities and a person’s quality of life. These interventions are important for people who are living at home and could assist in lowering the burden on home support services.
Resumo:
To date, a wide range of methods has been used to measure physical activity in children and adolescents. These include self-report methods such as questionnaires, activity logs, and diaries as well as objective measures of physical activity such as direct observation, doubly labeled water, heart rate monitoring, accelerometers, and pedometers. The purpose of this review is to overview the methods currently being used to measure physical activity in children and adolescents. For each measurement approach, new developments and/or innovations are identified and discussed. Particular attention is given to the use of accelerometers and the calibration of accelerometer output to units of energy expenditure to developing children.
Resumo:
Hyperglycemia, which increases O-linked beta-N-acetylglucosamine (O-GlcNAc) proteins, leads to changes in vascular reactivity. Because vascular dysfunction is a key feature of arterial hypertension, we hypothesized that vessels from deoxycorticosterone acetate and salt (DOCA-salt) rats exhibit increased O-GlcNAc proteins, which is associated with increased reactivity to constrictor stimuli. Aortas from DOCA rats exhibited increased contraction to phenylephrine (E(max) [mN] = 17.6 +/- 4 versus 10.7 +/- 2 control; n = 6) and decreased relaxation to acetylcholine (47.6 +/- 6% versus 73.2 +/- 10% control; n = 8) versus arteries from uninephrectomized rats. O- GlcNAc protein content was increased in aortas from DOCA rats (arbitrary units = 3.8 +/- 0.3 versus 2.3 +/- 0.3 control; n = 5). PugNAc (O- GlcNAcase inhibitor; 100 mu mol/L; 24 hours) increased vascular O- GlcNAc proteins, augmented phenylephrine vascular reactivity (18.2 +/- 2 versus 10.7 +/- 3 vehicle; n = 6), and decreased acetylcholine dilation in uninephrectomized (41.4 +/- 6 versus 73.2 +/- 3 vehicle; n = 6) but not in DOCA rats (phenylephrine, 16.5 +/- 3 versus 18.6 +/- 3 vehicle, n = 6; acetylcholine, 44.7 +/- 8 versus 47.6 +/- 7 vehicle, n = 6). PugNAc did not change total vascular endothelial nitric oxide synthase levels, but reduced endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) phosphorylation (P < 0.05). Aortas from DOCA rats also exhibited decreased levels of endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) (P < 0.05) but no changes in total endothelial nitric oxide synthase or Akt. Vascular O-GlcNAc-modified endothelial nitric oxide synthase was increased in DOCA rats. Blood glucose was similar in DOCA and uninephrectomized rats. Expression of O- GlcNAc transferase, glutamine: fructose-6-phosphate amidotransferase, and O- GlcNAcase, enzymes that directly modulate O-GlcNAcylation, was decreased in arteries from DOCA rats (P < 0.05). This is the first study showing that O-GlcNAcylation modulates vascular reactivity in normoglycemic conditions and that vascular O- GlcNAc proteins are increased in DOCA-salt hypertension. Modulation of increased vascular O-GlcNAcylation may represent a novel therapeutic approach in mineralocorticoid hypertension. (Hypertension. 2009; 53: 166-174.)
Resumo:
No fully effective treatment has been developed since the discovery of Chagas' disease. Since drug-resistant Trypanosoma cruzi strains are occurring and the current therapy is effective in the acute phase but with various adverse side effects, more studies are needed to characterize the susceptibility of T. cruzi to new drugs. Pre-mRNA maturation in trypanosomatids occurs through a process called trans-splicing, which is unusual RNA processing reaction, and it implies the processing of polycistronic transcription units into individual mRNAs; a short transcript spliced leader (SL RNA) is trans-spliced to the acceptor pre-mRNA, giving origin to the mature mRNA. Cubebin derivatives seem to provide treatments with less collateral effects than benznidazole and showed similar or better trypanocidal activities than benznidazole. Therefore, the cubebin derivatives ((-)-6,6′-dinitrohinokinin (DNH) and (-)-hinokinin (HQ)) interference in the mRNA processing was evaluated using T. cruzi permeable cells (Y and BOL (Bolivia) strains) following by RNase protection reaction. These substances seem to intervene in any step of the RNA transcription, promoting alterations in the RNA synthesis, even though the RNA processing mechanism still occurs. Furthermore, HQ presented better activity against the parasites than DNH, meaning that BOL strain seems to be more resistant than Y. © 2011 Springer-Verlag.
Resumo:
Methylphenidate is currently a drug of abuse and readily prescribed to both adolescents and adults. Chronic methylphenidate (MPH) exposure results in an increase in DA in the motive circuit, including the caudate nucleus (CN), similar to other drugs of abuse. This study focuses on research aimed to elucidate if there are intrinsic underlying differences in the CN electrophysiological activity of animals exhibiting different chronic responses to the same dose of MPH. Behavioral and caudate nucleus (CN) neuronal activity following acute and chronic doses of MPH was assessed by simultaneously recording the behavioral and neuronal activity. The experimental protocol lasted for 10 days using four groups; saline, 0.6, 2.5 and 10.0mg/kg MPH. Initially, the study determined that animals exposed to the same dose of MPH exhibited either behavioral sensitization or behavioral tolerance. Therefore animals were classified into two groups (behaviorally sensitized/tolerant) and their neuronal activity was evaluated. Four hundred and fifty one units were evaluated. Overall, a mixture of increases and decreases in CN neuronal populations was observed at initial MPH exposure, and at ED10 baseline and ED10 rechallenge. When separated based on their behavioral response (sensitized/tolerant), significant differences in neuronal response patterns was revealed. Animals exhibiting sensitization were more likely to increase their neuronal activity at ED1 and ED10 baseline, expressing the opposite response at ED10 rechallenge. Furthermore, when neuronal populations recorded from those animals exhibiting behavioral sensitization were statistically compared to those from animals exhibiting behavioral tolerance significant differences were observed. Collectively, these findings tell us that animals exposed to the same dose of MPH can respond oppositely and moreover that there is in fact some intrinsic difference in the two population’s neuronal activity. This study offers new insight into the electrophysiological differences between sensitized and tolerant animals.
Resumo:
Human hematopoiesis originates in a population of stem cells with transplantable lympho-myeloid reconstituting potential, but a method for quantitating such cells has not been available. We now describe a simple assay that meets this need. It is based on the ability of sublethally irradiated immunodeficient nonobese diabetic–scid/scid (NOD/SCID) mice to be engrafted by intravenously injected human hematopoietic cells and uses limiting dilution analysis to measure the frequency of human cells that produce both CD34−CD19+ (B-lymphoid) and CD34+ (myeloid) colony-forming cell progeny in the marrow of such recipients 6 to 8 weeks post-transplant. Human cord blood (CB) contains ≈5 of these competitive repopulating units (CRU) per ml that have a similar distribution between the CD38− and CD38+ subsets of CD34+ CB cells as long-term culture-initiating cells (LTC-IC) (4:1 vs. 2:1). Incubation of purified CD34+CD38− human CB cells in serum-free medium containing flt-3 ligand, Steel factor, interleukin 3, interleukin 6, and granulocyte colony-stimulating factor for 5–8 days resulted in a 100-fold expansion of colony-forming cells, a 4-fold expansion of LTC-IC, and a 2-fold (but significant, P < 0.02) increase in CRU. The culture-derived CRU, like the original CB CRU, generated pluripotent, erythroid, granulopoietic, megakaryopoietic, and pre-B cell progeny upon transplantation into NOD/SCID mice. These findings demonstrate an equivalent phenotypic heterogeneity amongst human CB cells detectable as CRU and LTC-IC. In addition, their similarly modest response to stimulation by a combination of cytokines that extensively amplify LTC-IC from normal adult marrow underscores the importance of ontogeny-dependent changes in human hematopoietic stem cell proliferation and self-renewal.
Resumo:
Single-unit activity was recorded from the hand areas of the somatosensory cortex of monkeys trained to perform a haptic delayed matching to sample task with objects of identical dimensions but different surface features. During the memory retention period of the task (delay), many units showed sustained firing frequency change, either excitation or inhibition. In some cases, firing during that period was significantly higher after one sample object than after another. These observations indicate the participation of somatosensory neurons not only in the perception but in the short-term memory of tactile stimuli. Neurons most directly implicated in tactile memory are (i) those with object-selective delay activity, (ii) those with nondifferential delay activity but without activity related to preparation for movement, and (iii) those with delay activity in the haptic-haptic delayed matching task but no such activity in a control visuo-haptic delayed matching task. The results indicate that cells in early stages of cortical somatosensory processing participate in haptic short-term memory.
Resumo:
In mammals, gonadal function is controlled by a hypothalamic signal generator that directs the pulsatile release of gonadotropin-releasing hormone (GnRH) and the consequent pulsatile secretion of luteinizing hormone. In female rhesus monkeys, the electrophysiological correlates of GnRH pulse generator activity are abrupt, rhythmic increases in hypothalamic multiunit activity (MUA volleys), which represent the simultaneous increase in firing rate of individual neurons. MUA volleys are arrested by estradiol, either spontaneously at midcycle or after the administration of the steroid. Multiunit recordings, however, provide only a measure of total neuronal activity, leaving the behavior of the individual cells obscure. This study was conducted to determine the mode of action of estradiol at the level of single neurons associated with the GnRH pulse generator. Twenty-three such single units were identified by cluster analysis of multiunit recordings obtained from a total of six electrodes implanted in the mediobasal hypothalamus of three ovariectomized rhesus monkeys, and their activity was monitored before and after estradiol administration. The bursting of all 23 units was arrested within 4 h of estradiol administration although their baseline activity was maintained. The bursts of most units reappeared at the same time as the MUA volleys, the recovery of some was delayed, and one remained inhibited for the duration of the study (43 days). The results indicate that estradiol does not desynchronize the bursting of single units associated with the GnRH pulse generator but that it inhibits this phenomenon. The site and mechanism of action of estradiol in this regard remain to be determined.
Resumo:
Patella taping reduces pain ill individuals with patellofemoral pain (PFP), although the mechanism remains unclear. One possibility is that patella taping modifies vasti muscle activity via stimulation of cutaneous afferents. The aim of this study was to investigate the effect of stretching the skin over the patella on vasti Muscle activity in people with PFP. Electromyographic activity (EMG) of individual motor units in vastus medialis obliquus (VMO) was recorded via a needle electrode and from Surface electrodes placed over VMO and vastus lateralis (VL). A tape was applied to the skin directly over the patella and stretch was applied via the tape in three directions, while subjects maintained a gentle isometric knee extension effort at constant force. Recordings were made from five separate motor units in each direction. Stretch applied to the skin over the patella increased VMO surface EMG and was greatest with lateral stretch. There was no change in VL surface EMG activity. While there was no net increase in motor unit firing rate, it was increased in the majority of motor units during lateral stretch. Application of stretch to the skin over VMO via the tape can increase VMO activity, suggesting that cutaneous stimulation may be one mechanism by which patella taping produces a clinical effect. (c) 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.