973 resultados para Amount concentration (molecules in cells), of phosphorylated Janus Activated Kinase 2
Resumo:
Introduction: HLA-G and HLA-E are two nonclassical class I molecules, which have been well recognized as modulators of innate and adaptive immune responses, and the expression of these molecules in virus infected cells has been associated with subversion of the immune response. Objective: In this study we performed a cross-sectional study, systematically comparing the expression of HLA-G and HLA-E in benign, premalignant and malignant laryngeal lesions, correlating with demographic and clinical variables and with the presence of high-risk and low-risk HPV types. Materials and methods: Laryngeal lesions were collected from 109 patients and stratified into 27 laryngeal papillomas, 17 dysplasias, 10 in situ laryngeal carcinomas, 27 laryngeal carcinomas without metastases, 28 laryngeal carcinomas with metastasis along with their respective draining cervical lymph nodes, and 10 normal larynx specimens. The expression of HLA-G and HLA-E molecules was determined by immunohistochemistry. HPV DNA detection and typing was performed using generic and specific primers. Results: HLA nonclassical molecules showed a distinct distribution pattern, according to the larynx lesion grade. HLA-G expression increased in benign and premalignant lesions, and gradually decreased in invasive carcinomas and in respective draining cervical lymph nodes. Conversely, HLA-E expression increased as far as lesion grade increased, including increased molecule expression in the draining lymph nodes of malignant lesions. Only 17 (15.6%) patients were HPV DNA positive. Conclusions: Overexpression of HLA-E and underexpression of HLAG appear to be good markers for malignant larynx lesion.
Resumo:
Abstract The final disposal of residues generated at sewage treatment plants (STPs) has become a major problem for cities, due to the increase in the amount of treated sewage. One of the alternatives for the residue, labeled sewage sludge, is its reuse in agriculture and in degraded soil. However, not all pathogens and metals present in it are eliminated during treatment. Diplopods have been used as bioindicators in ecotoxicological tests as they are constantly in close contact with the soil. Owing to this fact, the purpose of this study was to expose specimens of the diplopod Rhinocricus padbergi to substrate containing sewage sludge collected at STPs to analyze morphological alterations in their parietal and perivisceral fat body, where substances are stored. The exposures were held for 7, 15, or 90 days at different concentrations of sewage sludge (control, 1%, 10%, and 50%). The parietal fat body showed no alterations in any of the three exposure periods or concentrations. Alterations in the perivisceral fat body were observed for all exposure periods. According to the results, we suggest that the sludge used has toxic agents responsible for changing the animal's perivisceral fat body. © 2012 Microscopy Society of America.
Resumo:
Morphine is a potent analgesic opioid used extensively for pain treatment. During the last decade, global consumption grew more than 4-fold. However, molecular mechanisms elicited by morphine are not totally understood. Thus, a growing literature indicates that there are additional actions to the analgesic effect. Previous studies about morphine and oxidative stress are controversial and used concentrations outside the range of clinical practice. Therefore, in this study, we hypothesized that a therapeutic concentration of morphine (1 μM) would show a protective effect in a traditional model of oxidative stress. We exposed the C6 glioma cell line to hydrogen peroxide (H2O2) and/or morphine for 24 h and evaluated cell viability, lipid peroxidation, and levels of sulfhydryl groups (an indicator of the redox state of the cell). Morphine did not prevent the decrease in cell viability provoked by H2O2) but partially prevented lipid peroxidation caused by 0.0025% H2O2) (a concentration allowing more than 90% cell viability). Interestingly, this opioid did not alter the increased levels of sulfhydryl groups produced by exposure to 0.0025% H2O2), opening the possibility that alternative molecular mechanisms (a direct scavenging activity or the inhibition of NAPDH oxidase) may explain the protective effect registered in the lipid peroxidation assay. Our results demonstrate, for the first time, that morphine in usual analgesic doses may contribute to minimizing oxidative stress in cells of glial origin. This study supports the importance of employing concentrations similar to those used in clinical practice for a better approximation between experimental models and the clinical setting.
Resumo:
The aim of this study is to analyze the impact of food shortage on growth performance, by means of energetic reserves (proteins, glycogen and lipids) mobilization and hepatopancreas cells analysis in C. quadricarinatus juveniles maintained in groups, as well as the effect on culture water quality. Two experiments were performed, each of them with two feeding regimes during 45 days. The Control feeding regime, in which crayfish were fed daily (once a day) throughout the experimental period (DF), and the Cyclic feeding regime, in which juveniles were fed for 2 or 4 days (once a day) followed by 2 or 4 days of food deprivation (2F/2D and 4F/4D, respectively) in repeated cycles. Cyclic feeding influenced growth, biochemical composition from hepatopancreas and muscle, and water quality. Juveniles cyclically fed were unable to maintain a normal growth trajectory during 45 days. Apparent feed conversion ratio, apparent protein efficiency ratio, hepatosomatic index and relative pleon mass were similar in cyclic and daily fed animals and no structural damage was found in the hepatopancreas of juveniles subjected to cyclic feeding. The novelty of this study was the significant accumulation of proteins in pleonal muscle in both cyclic feeding regimes (approx. 18%) suggesting that the storage of this constitutive material during food shortage may be an adaptation for a compensatory growth when food becomes abundant again. The cyclic feeding regimes had a positive effect on water quality decreasing inorganic nitrogen concentration. This was due to the reduction in the amount of animal excretes and feces in the group that received approx. 50% less feed. Additionally, water pH was higher in cyclic feeding tanks, as a result of lower organic matter decomposition and consequent release of CO2. Accordingly, total ammonia in the water was significantly lower for the cyclic feeding regimes compared to their respective controls. This study suggests that the protocol of cyclic feeding could be applied at least 45 days in 1 g juveniles maintained in group conditions, without affecting the energetic reserves and hepatopancreas structure, emphasizing the high tolerance of this species to food restriction.
Resumo:
The role of innate immune response in protection against leptospirosis is poorly understood. We examined the expression of the chemokine CXCL2/MIP-2 and the cytokine TNF-alpha. in experimental resistant and susceptible mice models, C3H/HeJ, C3H/HePas and BALB/c strains, using a virulent strain of Leptospira interrogans serovar Copenhageni. Animals were infected intraperitoneally with 107 cells and the development of the disease was followed. Mortality of C3H/HeJ mice was observed whereas C3H/HePas presented jaundice and BALB/c mice remained asymptomatic. The infection was confirmed by the presence of leptospiral DNA in the organs of the animals, demonstrated by PCR. Sections of the organs were analyzed, after H&E stain. The relative expression of mRNA of chemokine CXCL2/MIP-2 and cytokine TNF-alpha was measured in lung, kidney and liver of the mice by qPCR. The concentrations of these proteins were measured in extracts of tissues and in serum of the animals, by ELISA. Increasing levels of transcripts and protein CXCL2/MIP-2 were detected since the first day of infection. The highest expression was observed at third day of infection in kidney, liver and lung of BALB/c mice. In C3H/HeJ the expression of CXCL2/MIP-2 was delayed, showing highest protein concentration in lung and kidney at the 5th day. Increasing in TNF-alpha transcripts were detected after infection, in kidney and liver of animals from the three mice strains. The expression of TNF-alpha protein in C3H/HeJ was also delayed, being detected in kidney and lung. Our data demonstrated that Leptospira infection stimulates early expression of CXCL2/MIP-2 and TNF-alpha in the resistant strain of mice. Histological analysis suggests that the expression of those molecules may be related to the influx of distinct immune cells and plays a role in the naturally acquired protective immunity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Lima S.A.F., Wodewotzky T.I., Lima-Neto J.F., Beltrao-Braga P.C.B. & Alvarenga F.C.L. 2012. [In vitro differentiation of mesenchimal stem cells of dogs into osteogenic precursors.] Diferenciacao in vitro de celulas-tronco mesenquimais da medula ossea de caes em precursores osteogenicos. Pesquisa Veterinaria Brasileira 32(5):463-469. Departamento de Reproducao Animal e Radiologia Veterinaria, Faculdade de Medicina Veterinaria e Zootecnia, Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubiao Junior s/n, Botucatu, SP 18618-970, Brazil. E-mail: silviavet@usp.br The aim of our research was to evaluate the potential for osteogenic differentiation of mesenchimal stem cells (MSC) obtained from dog bone marrow. The MSC were separated using the Ficoll method and cultured under two different conditions: DMEM low glucose or DMEM/F12, both containing L-glutamine, 20% of FBS and antibiotics. MSC markers were tested, confirming CD44+ and CD34- cells with flow cytometry. For osteogenic differentiation, cells were submitted to four different conditions: Group 1, same conditions used for primary cell culture with DMEM supplemented media; Group 2, same conditions of Group 1 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. Group 3, Cells cultured with supplemented DMEM/F12 media, and Group 4, same conditions as in Group 3 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. The cellular differentiation was confirmed using alizarin red and imunostaining with SP7/Osterix antibody. We observed by alizarin staining that calcium deposit was more evident in cells cultivated in DMEM/F12. Furthermore, by SP/7Osterix antibody immunostaining we obtained 1:6 positive cells when using DMEM/F12 compared with 1:12 for low-glucose DMEM. Based on our results, we conclude that the medium DMEM/F12 is more efficient for induction of differentiation of mesenchymal stem cells in canine osteogenic progenitors. This effect is probably due to the greater amount of glucose in the medium and the presence of various amino acids.
Resumo:
Rhipicephalus sanguineus is a widely distributed tick species that has adapted to the urban environment, and the dog is its main host. This species is also known as a vector and reservoir of diseases caused by bacteria, protozoa, and viruses. Currently, acaricides of synthetic chemical origin have been widely and indiscriminately used, leading to the development of resistance to these products by ticks and causing damage to the environment. Thus, these issues have made it necessary to seek other forms of controlling these ectoparasites. R. sanguineus was artificially infested in host New Zealand White rabbits, which were divided into four treatment groups: control (CG1 and CG2) and treatment (TG1 and TG2) groups. TG1 and TG2 hosts were provided with feed supplemented with esters of ricinoleic acid from castor oil at a concentration of 5 g/kg of feed for 7 and 15 days. Afterward, the ovaries of the female ticks were removed for analysis by transmission electron microscopy. The results showed ultrastructural changes in the somatic and germ cells of ovaries from TG1 and TG2 females, particularly with respect to chorion deposition, a protective membrane of the oocyte, as well as in the transport process of vitellogenic materials via the hemolymph and pedicel cells. Moreover, the mitochondria were less electron-dense and had cristae that were more disorganized than the mitochondria from CG1 and CG2 individuals. Thus, this study demonstrated the action of esters on the ovaries of R. sanguineus, signaling the prospect of a way to control this ectoparasite without affecting nontarget organisms or the environment. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or omega-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-alpha) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-alpha concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-alpha as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Tumor is a lesion that may be formed by an abnormal growth of neoplastic cells. Many factors increase the risk of cancer and different targets are involved in tumor progression. Within this thesis, we have addressed two different biological targets, independently connected with tumor formation, e.g. Hsp90 and androgen receptor. The ATP-dependent chaperone Hsp90 is responsible for the conformational maturation and the renaturation of proteins. “Client” proteins are associated with the cancer hallmarks, as cell proliferation and tumor progression. Consequently, Hsp90 has evolved into promising anticancer target. Over the past decade, radicicol has been identified as potential anticancer agent targeting Hsp90, but it is not active in vivo. With that aim of obtaining radicicol-related derivatives, we developed the design and synthesis of new chalcones analogs. Chalcones, which are abundant in edible plants, own a diverse array of pharmacological activities and are considered a versatile scaffold for drug design. Antiproliferative assays and western blot analysis on the new compounds showed that some of those display an interesting cytotoxic effect and the ability to modulate Hsp90 client proteins expression. Androgen Receptor (AR) hypersensitivity plays crucial role in prostate cancer, which progression is stimulated by androgens. The therapy consists in a combination of surgical or chemical castration, along with antiandrogens treatment. Casodex® (bicalutamide), is the most widespread antiandrogen used in clinic. However, hormonal therapy is time-limited since many patients develop resistance. Commercially available antiandrogens show a common scaffold, e.g. two substituted aromatic rings linked by a linear or a cyclic spacer. With the aim of obtaining novel pure AR antagonists, we developed a new synthetic methodology, which allowed us to introduce, as linker between two suitably chosen aromatic rings, a triazole moiety. Preliminary data suggest that the herein reported new molecules generally decrease PSA expression, thus confirming their potential AR antagonistic activity.
Resumo:
In search of transmittable epigenetic marks we investigated gene expression in testes and sperm cells of differentially fed F0 boars from a three generation pig feeding experiment that showed phenotypic differences in the F2 generation. RNA samples from 8 testes of boars that received either a diet enriched in methylating micronutrients or a control diet were analyzed by microarray analysis. We found moderate differential expression between testes of differentially fed boars with a high FDR of 0.82 indicating that most of the differentially expressed genes were false positives. Nevertheless, we performed a pathway analysis and found disparate pathway maps of development_A2B receptor: action via G-protein alpha s, cell adhesion_Tight junctions and cell adhesion_Endothelial cell contacts by junctional mechanisms which show inconclusive relation to epigenetic inheritance. Four RNA samples from sperm cells of these differentially fed boars were analyzed by RNA-Seq methodology. We found no differential gene expression in sperm cells of the two groups (adjusted P-value>0.05). Nevertheless, we also explored gene expression in sperm by a pathway analysis showing that genes were enriched for the pathway maps of bacterial infections in cystic fibrosis (CF) airways, glycolysis and gluconeogenesis p.3 and cell cycle_Initiation of mitosis. Again, these pathway maps are miscellaneous without an obvious relationship to epigenetic inheritance. It is concluded that the methylating micronutrients moderately if at all affects RNA expression in testes of differentially fed boars. Furthermore, gene expression in sperm cells is not significantly affected by extensive supplementation of methylating micronutrients and thus RNA molecules could not be established as the epigenetic mark in this feeding experiment.
Resumo:
Stats (s&barbelow;ignal t&barbelow;ransducer and a&barbelow;ctivator of t&barbelow;ranscription) are latent transcription factors that translocate from the cytoplasm to nucleus. Constitutive activation of Stat3α by upstream oncoproteins and receptor tyrosine kinases has been found in many human tumors and tumor-derived cell lines and it is often correlated with the activation of ErbB-2. In order to explore the involvement of ErbB-2 in the activation of Stat3 and the mechanisms underlying this event, an erbB-2 point mutant was used as a model of a constitutively activated receptor. Phenylalanine mutations (Y-F) were made in the receptor's autophosphorylation sites and their ability to activate Stat3α was evaluated. Our results suggest that Stat3α and Janus tyrosine kinase 2 associates with ErbB-2 prior to tyrosine phosphorylation of the receptor and that full activation of Stat3α by ErbB-2 requires the participation of other non-receptor tyrosine kinases. Both Src and Jak2 kinases contribute to the activation of Stat3α while only Src binds to ErbB-2 only when the receptor is tyrosine phosphorylated. Our results also suggest that tyrosine 1139 may be important for Src SH2 domain association since a mutant lacking this tyrosine reduces the ability of the Src SH2 domain to bind to ErbB-2 and significantly decreases its ability to activate Stat3α. ^ In order to disrupt aberrant STAT3α activation which contributes to tumorigenesis, we sought small molecules which can specifically bind to the STAT3 SH2 domain, thereby abolishing its ability of being recruited into receptors, and also blocking the dimer formation required for STAT3α activation. A phosphopeptide derived from gp130 was found to have a high affinity to STAT3 SH2 domain, and we decided to use this peptide as the base for further modifications. A series of peptide based compounds were designed and tested using electrophoretic mobility shift assay and fluorescence polarization assay to evaluate their affinity to the STAT3 SH2 domain. Two promising compounds, DRIV-73C and BisPOM, were used for blocking STAT3α activity in cell culture. Either can successfully impair STAT3α activation induced by IL-6 stimulation in HepG2 cells. BisPOM proved to be the more effective in blocking STAT3α tyrosine phosphorylation in induced cells and tumor cell lines, and was the more potent in inhibiting STAT3 dependent cell growth. ^
Resumo:
T cell activation and expansion is essential for immune response against foreign antigens. However, uncontrolled T cell activity can be manifested as a number of lymphoid derived diseases such as autoimmunity, graft versus host disease, and lymphoma. The purpose of this research was to test the central hypothesis that the Jak3/Stat5 pathway is critical for T cell function. To accomplish this objective, two novel Jak3 inhibitors, AG490 and PNU156804, were identified and their effects characterized on Jak3/Stat5 activation and T cell growth. Inhibition of Jak3 selectively disrupted primary human T lymphocyte growth in response to Interleukin-2 (IL-2), as well as other γ c cytokine family members including IL-4, IL-7, IL-9, and IL-15. Inhibition of Jak3 ablated IL-2 induced Stat5 but not TNF-α mediated NF-κβ DNA binding. Loss of Jak3 activity did not affect T cell receptor mediated signals including activation of p56Lck and Zap70, or IL-2 receptor a chain expression. To examine the effects of Jak3/Stat5 inhibition within a mature immune system, we employed a rat heart allograft model of Lewis (RT1 1) to ACI (RT1a). Heart allograft survival was significantly prolonged following Jak3/Stat5 inhibition when rats were treated with AG490 (20mg/kg) or PNU156804 (80mg/kg) compared to non-treated control animals. This effect was synergistically potentiated when Jak3 inhibitors were used in combination with a signal 1/2 disrupter, cyclosporine, but only additively potentiated with another signal 3 inhibitor, rapamycin. This suggested that sequential inhibition of T cell function is more effective. To specifically address the role of Stat5 in maintaining T cell activity, novel Stat5 antisense oligonucleotides were synthesized and characterized in vitro. Primary human T cells and T-cell tumor lines treated with Stat5 antisense oligonucleotide (7.5 μM) rapidly underwent apoptosis, while no changes in cell cycle were observed as measured by FACS analysis utilizing Annexin-V-Fluorescein and Propidium iodide staining. Evidence is provided to suggest that caspase 8 and 9 pathways mediate this event. Thus, Stat5 may act rather as a negative regulator of apoptotic signals and not as a positive regulator of cell cycle as previously proposed. We conclude that the Jak3/Stat5 pathway is critical for γc cytokine mediated gene expression necessary for T cell expansion and normal immune function and represents an therapeutically relevant effector pathway to combat T cell derived disease. ^
Resumo:
The accelerating decrease of Arctic sea ice substantially changes the growth conditions for primary producers, particularly with respect to light. This affects the biochemical composition of sea ice algae, which are an essential high-quality food source for herbivores early in the season. Their high nutritional value is related to their content of polyunsaturated fatty acids (PUFAs), which play an important role for successful maturation, egg production, hatching and nauplii development in grazers. We followed the fatty acid composition of an assemblage of sea ice algae in a high Arctic fjord during spring from the early bloom stage to post bloom. Light conditions proved to be decisive in determining the nutritional quality of sea ice algae, and irradiance was negatively correlated with the relative amount of PUFAs. Algal PUFA content decreased on average by 40 % from April to June, while algal biomass (measured as particulate carbon, C) did not differ. This decrease was even more pronounced when algae were exposed to higher irradiances due to reduced snow cover. The ratio of chlorophyll a (chl a) to C, as well as the level of photoprotective pigments, confirmed a physiological adaptation to higher light levels in algae of poorer nutritional quality. We conclude that high irradiances are detrimental to sea ice algal food quality, and that the biochemical composition of sea ice algae is strongly dependent on growth conditions.
Resumo:
The present dataset contain source data for Figure 5b from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. They show integrated responses of double-phosphorylated ERK1 and ERK2 that were calculated for different Epo concentrations for the original model as well as for models with elevated ERK1 or ERK2 levels.
Resumo:
The factors influencing prolactin (PRL) variation in birds and in wildlife in general have rarely been investigated with respect to the physiological impacts of exposure to environmental contaminants. We investigated the associations between circulating baseline PRL levels and concentrations of eight persistent organohalogen contaminant (OHC) classes (i.e., major organochlorines and brominated flame retardants, and associated metabolic products) in blood (plasma) of free-ranging glaucous gulls (Larus hyperboreus), a top predator in the Norwegian Arctic, engaged in the process of incubation. We further examined whether plasma OHC concentrations were associated with the variation of PRL in glaucous gulls exposed to a standardized capture/restraint protocol. Plasma OHC concentrations in male glaucous gulls were 2-to 3-fold higher relative to females. Baseline PRL levels tended to be higher in females compared to males, although not significantly (p = 0.20). In both males and females, the 30-min capture/restraint protocol led on average to a 26% decrease in PRL levels, which resulted in a rate of PRL decrease of 0.76 ng/mL/min. The baseline PRL levels and the rate of decrease in PRL levels tended to vary negatively with plasma OHC concentrations in males, but not in females, although several of these associations did not adhere with the criterion of significance (alpha = 0.05). Present results suggest that in highly OHC-exposed male glaucous gulls, the control of PRL release may be affected by the direct or indirect modulating actions of OHCs and/or their metabolically derived products. We conclude that potentially OHC-mediated impact on PRL secretion in glaucous gulls (males) may be a contributing factor to the adverse effects observed on the reproductive behavior, development and population size of glaucous gulls breeding in the Norwegian Arctic.