908 resultados para Alveolar-deposited surface area
Resumo:
Controlling the surface properties of nanoparticles using ionic dopants prone to be surface segregated has emerged as an interesting tool for obtaining highly selective and sensitive sensors. In this work, the surface segregation of Cd cations on SnO2 nanopowders prepared by the Pechini`s method was studied by infrared spectroscopy, X-ray diffraction, and specific surface area analysis. We observed that the surface chemistry modifications caused by the surface segregation of Cd and the large specific surface area were closely responsible for a rapid and regular electrical response of 5 mol% Cd-doped SnO2 films to 100 ppm propane and NO, diluted in dry air at relatively low temperature (100 degrees C). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bovine bone ash is the main raw material for fabrication of bone china, a special kind of porcelain that has visual and mechanical advantages when compared to usual porcelains. The properties of bone china are highly dependent on the characteristics of the bone ash. However, despite a relatively common product, the science behind formulations and accepted fabrication procedures for bone china is not completely understood and deserves attention for future processing optimizations. In this paper, the influence of the preparation steps (firing, milling, and washing of the bones) on the physicochemical properties of bone ash particles was investigated. Bone powders heat-treated at temperatures varying from 700 to 1000 degrees C were washed and milled. The obtained materials were analyzed in terms of particle size distribution, chemical composition, density, specific surface area, FTIR spectroscopy, dynamic electrophoretic mobility, crystalline phases and scanning electron microscopy. The results indicated that bone ash does not significantly change in terms of chemistry and physical features at calcination temperatures above 700 degrees C. After washing in special conditions, one could only observe hydroxyapatite in the diffraction pattern. By FTIR it was observed that carbonate seems to be mainly concentrated on the surface of the powders. Since this compound can influence in the dispersion stability, and consequently in the quality of the final bone china product, and considering optimal washing parameters based on the dynamic electrophoretic mobility results, we describe a procedure for surface cleaning. (c) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.
Resumo:
Activated carbon as catalyst support was treated with HCl, HNO3, and HF and the effects of acid treatments on the properties of the activated carbon support were studied by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). Ni catalysts supported on untreated and treated activated carbons were prepared, characterized and tested for the reforming reaction of methane with carbon dioxide. It is found that acid treatment significantly changed the surface chemical properties and pore structure of the activated carbon. The surface area and pore volume of the carbon supports are generally enhanced upon acid treatment due to the removal of impurities present in the carbon. The adsorption capacity of Ni2+ on the carbon supports is also increased, and the increase can be closely correlated with the surface acidity. The impregnation of nickel salts decreases the surface area and pore volume of carbon supports both in micropores and mesopores. Acid treatment results in a more homogeneous distribution of the nickel salt in carbon. When the impregnated carbons are heated in inert atmosphere, there exists a redox reaction between nickel oxide and the carbon. Catalytic activity tests for methane reforming with carbon dioxide show that the activity of nickel catalysts based on the acid-treated carbon supports is closely related with the surface characteristics of catalysts. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The assessment of surface water nanofiltration (NF) for the removal of endocrine disruptors (EDs) Nonylphenol Ethoxylate (IGEPAL), 4-Nonylphenol (NP) and 4-Octylphenol (OP) was carried out with three commercial NF membranes - NF90, NF200, NF270. The permeation experiments were conducted in laboratory flat-cell units of 13.2 x 10(-4) m(2) of surface area and in a DSS Lab-unit M20 with a membrane surface area of 0.036 m2. The membranes hydraulic permeabilities ranged from 3.7 to 15.6 kg/h/m(2)/bar and the rejection coefficients to NaCl, Na2SO4 and Glucose are for NF90: 97%, 99% and 97%, respectively; for NF200: 66%, 98% and 90%, respectively and for NF270: 48%, 94% and 84%, respectively. Three sets of nanofiltration experiments were carried out: i) NF of aqueous model solutions of NP, IGEPAL and OP running in total recirculation mode; ii) NF of surface water from Rio Sado (Settibal, Portugal) running in concentration mode; iii) NF of surface water from Rio Sado inoculated with NP, IGEPAL and OP running in concentration mode. The results of model solutions experiments showed that the EDs rejection coefficients are approximately 100% for all the membranes. The results obtained for the surface water showed that the rejection coefficients to natural organic Matter (NOM) are 94%, 82% and 78% for NF90, NF200 and NF 270 membranes respectively, with and without inoculation of EDs. The rejection coefficients to EDs in surface water with and without inoculation of EDs are 100%, showing that there is a fraction of NOM of high molecular weight that retains the EDs in the concentrate and that there is a fraction of NOM of low molecular weight that permeates through the NF membranes free of EDs.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica Ramo de processos químicos
Resumo:
The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.
Resumo:
We analysed the composition of phyllosilicate minerals in sediments deposited by the Rhone and Oberaar glaciers (Swiss Alps), in order to identify processes and rates of biogeochemical weathering in relation to glacial erosion. The investigated sediments are part of chronosequences consisting of (A) suspended, "fresh" sediment in melt water; (B) terminal moraines from the Little Ice Age (LIA; approximately 1560-1850); and (C) tilts of the Younger Dryas interval (YD; approximately 11'500y BP). Secondary weathering products associated with the suspended sediment have not been observed: we therefore exclude intermittent subglacial storage and weathering of this material and assume that the suspended sediment is directly derived from mechanically abraded bedrock. This implies that biogeochemical weathering processes started once the glacially-derived sediment was deposited in the proglacial area. The combination of a developing vegetation cover, the generally high permeability allowing the percolation of precipitation, and the chemical reactivity related to the dominance of fine-grained material (<63 pm) drives the weathering process and the initial Umbrepts present in LIA profiles undergo podzolisation and lead to the formation of Humods observed in YD profiles. Systematic XRD analyses of these chronosequences show a progressive decrease in biotite contents and a concomitant increase in pedogenically formed vermiculite with increasing sediment age. Biotite contents decrease by 25-50% in the upper 30 cm of the moraines after 145-275 yr in the proglacial environment. Biotite weathering rates are calculated using the difference in the biotite content between unweathered and weathered glacial sediments within the investigated profiles. The reactive mineral surface area is estimated geometrically, both with regards to the total relative surface (WRT) as well as to the relative edge surface (WRE). WRT Biotite weathering rates are estimated as 10(-13)-10-(15) mol(biotite) m(biotite)(-2) s(-1). WRE Biotite weathering rates are on the order of 10(-13)-10(-14) mol(biotite) m(biotite)(-2) s(-1). Biotite weathering rates obtained by this study are in the order of one magnitude higher in comparison to other published field-based weathering rates. Using biotite as an indicator, we therefore suggest that glacially-derived material in the area of the Oberaar and Rhone glaciers is generally subjected to enhanced biogeochemical weathering, starting immediately after deposition in the proglacial zone and subsequently continuing for thousands of years after glacier retreat.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). (Demirdjian et al., 2005). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Size distributions indicated that particles are within the nanometric range. Surface characteristics of sampled particles varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean levels of 8- hydroxy-2'-deoxyguanosine and several aldehydes (hexanal, heptanal, octanal, nonanal) increased during two consecutive days of exposure for non-smokers. In order to bring some insight into the relation between the particulate characteristics and the formation of ROS by-products, biomarkers levels will be discussed in relation with exposure variables.
Resumo:
Repeated passaging in conventional cell culture reduces pluripotency and proliferation capacity of human mesenchymal stem cells (MSC). We introduce an innovative cell culture method whereby the culture surface is dynamically enlarged during cell proliferation. This approach maintains constantly high cell density while preventing contact inhibition of growth. A highly elastic culture surface was enlarged in steps of 5% over the course of a 20-day culture period to 800% of the initial surface area. Nine weeks of dynamic expansion culture produced 10-fold more MSC compared with conventional culture, with one-third the number of trypsin passages. After 9 weeks, MSC continued to proliferate under dynamic expansion but ceased to grow in conventional culture. Dynamic expansion culture fully retained the multipotent character of MSC, which could be induced to differentiate into adipogenic, chondrogenic, osteogenic, and myogenic lineages. Development of an undesired fibrogenic myofibroblast phenotype was suppressed. Hence, our novel method can rapidly provide the high number of autologous, multipotent, and nonfibrogenic MSC needed for successful regenerative medicine.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".
Resumo:
A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane"s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.
Resumo:
A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane"s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.
Resumo:
Electrodes modified with poly(5-amino-1-naphthol)/Prussian blue (poly(5-NH2-1-NAP)/PB) hybrid films are able to electrochemically reduce H2O2 in medium containing an excess of Na+ cations. This is an important advantage for biosensing applications over electrodes in which only conventionally (electro) deposited Prussian blue is present. Consequently, the aim of this work was to examine the application of templates of ordered arrays of colloidal poly(styrene) spheres (800, 450 and 100 nm in diameter) to produce inverse opal structures of poly(5-NH2-1-NAP)/PB hybrid platforms, in an effort to study the influence of the increase in surface area/volume ratio and higher exposition of the mediator active sites on material performance during H2O2 determination employing the different sized porous structures. Moreover, since the accentuated hydrophilic character of poly(5-NH2-1-NAP)/PB also allows H2O2 electrochemical reduction in inner active sites, issues concerning the amount of mediator electrodeposited on the electrode were also reflected in the observed results.
Resumo:
The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.