964 resultados para Altitudinal belt
Resumo:
This study was materialized to analyze the management issues regarding the seafood processing waste generated including its impact on the coastal community in one of the important seafood hubs of India Aroor Seafood Industrial Belt Alappuzha District Kerala The area has witnessed serious pollution issues related to seafood waste and seldom has any action been implemented by either the polluters or the preventers Further this study is also intended to suggest a low cost eco friendly method for utilizing the bulk quantity of seafood solid waste generated in the area for the promotion of organic farming The high nutritional value of seafood enables the subsequent offal to be considered as an excellent source for plant nutrition The liquid silage accepted worldwide as the cheapest and practical solution for rendering fish waste in bulk for production of livestock feed is adopted in this study to develop foliar fertilizer formulations from various seafood waste The effect of seafood foliar sprays is demonstrated by field studies on two plant varieties such as Okra and Amaranthus
Resumo:
Teacher resources for Lesson G in the Discover Oceanography 'Scheme of Work' for use in schools.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.
Resumo:
Yarn minisett technique (YMT) has been promoted throughout West Africa since the 1980s as a sustainable means of producing clean yarn planting material, but adoption of the technique is Often reported as being patchy at best. While there has been much research Oil the factors that influence adoption of the technique, there have been no attempts to assess its economic viability under 'farmer-managed' as distinct from 'on station' conditions. The present paper describes the results of farmer-managed trials employing the YMT (white yarn: Dioscorea rotundata) at two villages in Igalaland, Kogi State, Nigeria. One of the villages (Edeke) is on the banks of the River Niger and represents it specialist yarn environment, whereas the other village (Ekwuloko) is inland, where farmers employ a more general cropping system. Four farmers were selected in each of the two villages and asked to plant a trial comprising two varieties of yam, their popular local variety its well its another variety grown in other parts of Igalaland, and to treat yarn setts (80-100 g) with either woodash or insecticide/nematicide + fungicide mix (chemical treatment). Results suggest that while chemical sett treatment increased yield and hence gross margin compared with woodash, if household labour is costed then YMT is not economically viable. However, the specialist yarn growers of Edeke were far more positive about the use of YMT as they tended to keep the yarn seed tubers for planting rather than sell them. Thus, great care needs to be taken with planning adoption surveys on the assumption that all farmers should adopt a technology.
Resumo:
The warm conveyor belt (WCB) of an extratropical cyclone generally splits into two branches. One branch (WCB1) turns anticyclonically into the downstream upper-level tropospheric ridge, while the second branch (WCB2) wraps cyclonically around the cyclone centre. Here, the WCB split in a typical North Atlantic cold-season cyclone is analysed using two numerical models: the Met Office Unified Model and the COSMO model. The WCB flow is defined using off-line trajectory analysis. The two models represent the WCB split consistently. The split occurs early in the evolution of the WCB with WCB1 experiencing maximum ascent at lower latitudes and with higher moisture content than WCB2. WCB1 ascends abruptly along the cold front where the resolved ascent rates are greatest and there is also line convection. In contrast, WCB2 remains at lower levels for longer before undergoing saturated large-scale ascent over the system's warm front. The greater moisture in WCB1 inflow results in greater net potential temperature change from latent heat release, which determines the final isentropic level of each branch. WCB1 also exhibits lower outflow potential vorticity values than WCB2. Complementary diagnostics in the two models are utilised to study the influence of individual diabatic processes on the WCB. Total diabatic heating rates along the WCB branches are comparable in the two models with microphysical processes in the large-scale cloud schemes being the major contributor to this heating. However, the different convective parameterisation schemes used by the models cause significantly different contributions to the total heating. These results have implications for studies on the influence of the WCB outflow in Rossby wave evolution and breaking. Key aspects are the net potential temperature change and the isentropic level of the outflow which together will influence the relative mass going into each WCB branch and the associated negative PV anomalies at the tropopause-level flow.
Resumo:
Strong winds equatorwards and rearwards of a cyclone core have often been associated with two phenomena, the cold conveyor belt (CCB) jet and sting jets. Here, detailed observations of the mesoscale structure in this region of an intense cyclone are analysed. The {\it in-situ} and dropsonde observations were obtained during two research flights through the cyclone during the DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) field campaign. A numerical weather prediction model is used to link the strong wind regions with three types of ``air streams'', or coherent ensembles of trajectories: two types are identified with the CCB, hooking around the cyclone center, while the third is identified with a sting jet, descending from the cloud head to the west of the cyclone. Chemical tracer observations show for the first time that the CCB and sting jet air streams are distinct air masses even when the associated low-level wind maxima are not spatially distinct. In the model, the CCB experiences slow latent heating through weak resolved ascent and convection, while the sting jet experiences weak cooling associated with microphysics during its subsaturated descent. Diagnosis of mesoscale instabilities in the model shows that the CCB passes through largely stable regions, while the sting jet spends relatively long periods in locations characterized by conditional symmetric instability (CSI). The relation of CSI to the observed mesoscale structure of the bent-back front and its possible role in the cloud banding is discussed.
Resumo:
We analyse the widely-used international/ Zürich sunspot number record, R, with a view to quantifying a suspected calibration discontinuity around 1945 (which has been termed the “Waldmeier discontinuity” [Svalgaard, 2011]). We compare R against the composite sunspot group data from the Royal Greenwich Observatory (RGO) network and the Solar Optical Observing Network (SOON), using both the number of sunspot groups, N{sub}G{\sub}, and the total area of the sunspots, A{sub}G{\sub}. In addition, we compare R with the recently developed interdiurnal variability geomagnetic indices IDV and IDV(1d). In all four cases, linearity of the relationship with R is not assumed and care is taken to ensure that the relationship of each with R is the same before and after the putative calibration change. It is shown the probability that a correction is not needed is of order 10{sup}−8{\sup} and that R is indeed too low before 1945. The optimum correction to R for values before 1945 is found to be 11.6%, 11.7%, 10.3% and 7.9% using A{sub}G{\sub}, N{sub)G{\sub}, IDV, and IDV(1d), respectively. The optimum value obtained by combining the sunspot group data is 11.6% with an uncertainty range 8.1-14.8% at the 2σ level. The geomagnetic indices provide an independent yet less stringent test but do give values that fall within the 2σ uncertainty band with optimum values are slightly lower than from the sunspot group data. The probability of the correction needed being as large as 20%, as advocated by Svalgaard [2011], is shown to be 1.6 × 10{sup}−5{\sup}.
Resumo:
We investigate the relationship between interdiurnal variation geomagnetic activity indices, IDV and IDV(1d), corrected sunspot number, R{sub}C{\sub}, and the group sunspot number R{sub}G{\sub}. R{sub}C{\sub} uses corrections for both the “Waldmeier discontinuity”, as derived in Paper 1 [Lockwood et al., 2014c], and the “Wolf discontinuity” revealed by Leussu et al. [2013]. We show that the simple correlation of the geomagnetic indices with R{sub}C{\sub}{sup}n{\sup} or R{sub}G{\sub}{sup}n{\sup} masks a considerable solar cycle variation. Using IDV(1d) or IDV to predict or evaluate the sunspot numbers, the errors are almost halved by allowing for the fact that the relationship varies over the solar cycle. The results indicate that differences between R{sub}C{\sub} and R{sub}G{\sub} have a variety of causes and are highly unlikely to be attributable to errors in either R{sub}G{\sub} alone, as has recently been assumed. Because it is not known if R{sub}C{\sub} or R{sub}G{\sub} is a better predictor of open flux emergence before 1874, a simple sunspot number composite is suggested which, like R{sub}G{\sub}, enables modelling of the open solar flux for 1610 onwards in Paper 3, but maintains the characteristics of R{sub}C{\sub}.
Resumo:
From the variation of near-Earth interplanetary conditions, reconstructed for the mid-19th century to the present day using historic geomagnetic activity observations, Lockwood and Owens [2014] have suggested that Earth remains within a broadened streamer belt during solar cycles when the Open Solar Flux (OSF) is low. From this they propose that the Earth was immersed in almost constant slow solar wind during the Maunder minimum (c. 1650-1710). In this paper, we extend continuity modelling of the OSF to predict the streamer belt width using both group sunspot numbers and corrected international sunspot numbers to quantify the emergence rate of new OSF. The results support the idea that the solar wind at Earth was persistently slow during the Maunder minimum because the streamer belt was broad.
Resumo:
Warm conveyor belts (WCBs) are the main ascending air masses within extratropical cyclones. They often exhibit strong condensation and precipitation, associated with ascent on large scales or embedded convection. Most of the air outflows into the upper troposphere as part of a ridge. Such ridges are an integral part of Rossby waves propagating along the tropopause and are identified with a negative potential vorticity (PV) anomaly and associated anticyclonic circulation. It has been argued that diabatic modification of PV in WCBs has an important influence on the extent of the ridge, propagation of Rossby waves and weather impacts downstream. Following the coherent ensemble of trajectories defining a WCB, PV is expected to increase with time while below the level of maximum latent heating and then decrease as trajectories ascend above the heating maximum. In models, it is found that the net change is approximately zero, so that the average PV of the WCB outflow is almost equal to the PV of its inflow. Here, the conditions necessary for this evolution are explored analytically using constraints arising from the conservation of circulation. It is argued that the net PV change is insensitive to the details of diabatic processes and the PV maximum midway along a WCB depends primarily on the net diabatic transport of mass from the inflow to the outflow layer. The main effect of diabatic processes within a WCB is to raise the isentropic level of the outflow, rather than to modify PV.
Resumo:
To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid- and high-latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high-elevation oligotrophic lakes, will likely see range contraction under future anthropogenic-induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio-indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes.
Resumo:
In this paper, we construct a dynamic portrait of the inner asteroidal belt. We use information about the distribution of test particles, which were initially placed on a perfectly rectangular grid of initial conditions, after 4.2 Myr of gravitational interactions with the Sun and five planets, from Mars to Neptune. Using the spectral analysis method introduced by Michtchenko et al., the asteroidal behaviour is illustrated in detail on the dynamical, averaged and frequency maps. On the averaged and frequency maps, we superpose information on the proper elements and proper frequencies of real objects, extracted from the data base, AstDyS, constructed by Milani and Knezevic. A comparison of the maps with the distribution of real objects allows us to detect possible dynamical mechanisms acting in the domain under study; these mechanisms are related to mean-motion and secular resonances. We note that the two- and three-body mean-motion resonances and the secular resonances (strong linear and weaker non-linear) have an important role in the diffusive transportation of the objects. Their long-lasting action, overlaid with the Yarkovsky effect, may explain many observed features of the density, size and taxonomic distributions of the asteroids.
Resumo:
Eight new species of the spider genus Chrysometa Simon, 1894 (Araneae, Tetragnathidae) are described and illustrated. Chrysometa nubigena n. sp., C. waikoxi n. sp., C. petrasierwaldae n. sp., C. santosi n. sp., C. yanomami n. sp., C. candianii n. sp., C. lomanhungae n. sp., and C. saci n. sp. Those species were collected in a study on the diversity of spider communities along altitudinal gradients in Brazilian Amazonia. C. saci was captured at the Serra do Tapirapeco (Barcelos), while all the other species are from the Pico da Neblina (Sao Gabriel da Cachoeira), the highest mountain in Brazil. We provide new records for C. boraceia, C. flava, C. guttata, C. minuta and C. opulenta, and we describe the male of C. minuta for the first time. We also present the first results on the diversity and altitudinal distribution of the species of Chrysometa at the Pico da Neblina and Serra do Tapirapeco. We sampled the first locality at six different elevations, and obtained 336 specimens distributed in 12 species. Richness and abundance, as well as relative importance peaked at the highest sites sampled (2,000 and 2,400 m). The three most abundant species showed a segregated distribution, being dominant or exclusively distributed in different altitudes. At the Serra do Tapirapeco, sampling at four different elevations up to 1200 m, we only obtained 40 individuals divided in four species, and there was no clear relation to altitude. Most of the new species were found at mid and high altitude sites, while species from lower altitude sites represented widespread species. The comparison with other neotropical spiders inventories highlights the high diversity recorded at Pico da Neblina, which could be assigned to the large environmental variation covered in this work and to the sampling of high-altitude environments. Inventories in the Andean region and other information in the literature also seem to support the association of Chrysometa with high altitude environments.
Resumo:
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The EI Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670-820 degrees C and 4.5-5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between approximate to 477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We studied the P-T-t evolution of a mid-crustal igneous-metamorphic segment of the Famatinian Belt in the eastern sector of the Sierra de Velasco during its exhumation to the upper crust. Thermobarometric and geochronological methods combined with field observations permit us to distinguish three tectonic levels. The deepest Level I is represented by metasedimentary xenoliths and characterized by prograde isobaric heating at 20-25 km depth. Early/Middle Ordovician granites that contain xenoliths of Level I intruded in the shallower Level II. The latter is characterized by migmatization coeval with granitic intrusions and a retrograde isobaric cooling P-T path at 14-18 km depth. Level II was exhumed to the shallowest supracrustal Level III, where it was intruded by cordierite-bearing granites during the Middle/Late Ordovician and its host-rock was locally affected by high temperature-low pressure HT/LP metamorphism at 8-10 km depth. Level III was eventually intruded by Early Carboniferous granites after long-term slow exhumation to 6-7 km depth. Early/Middle Ordovician exhumation of Level II to Level III (Exhumation Period I,0.25-0.78 mm/yr) was faster than exhumation of Level III from the Middle/Late Ordovician to the Lower Carboniferous (Exhumation Period II, 0.01-0.09 mm/yr). Slow exhumation rates and the lack of regional evidence of tectonic exhumation suggest that erosion was the main exhumation mechanism of the Famatinian Belt. Widespread slow exhumation associated with crustal thickening under a HT regime suggests that the Famatinian Belt represents the middle crust of an ancient Altiplano-Puna-like orogen. This thermally weakened over-thickened Famatinian crust was slowly exhumed mainly by erosion during similar to 180 Myr. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.