978 resultados para Alpha(1B)-Adrenoceptor
Cardiovascular effects of noradrenaline microinjected into the insular cortex of unanesthetized rats
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to investigate the effect of several drug combinations (atropine, xylazine, romifidine, methotrimeprazine, midazolam, or fentanyl) with ketamine for short term anesthesia in cats. Twelve cats were anesthetized 6 times by using a cross-over Latin square protocol: methotrimeprazine was combined with midazolam, ketamine, and fentanyi; midazolam and ketamine; romifidine and ketamine; and xylazine and ketamine. Atropine was combined with romifidine and ketamine, and xylazine and ketamine. Temperature, heart rate, and respiratory rate decreased in all groups. Apnea occurred in 1 cat treated with methotrimeprazine, romifidine, and ketamine, suggesting that ventilatory support may be necessary when this protocol is used. Emesis occurred in some cats treated with alpha(2)-adrenoceptor agonists, and this side effect should be considered when these drugs are used.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
1 Nitric oxide (NO) and alpha(2)-adrenoceptor and imidazoline agonists such as moxonidine may act centrally to inhibit sympathetic activity and decrease arterial pressure.2 In the present study, we investigated the effects of pretreatment with L-NAME ( NO synthesis inhibitor), injected into the 4th ventricle (4th V) or intravenously (i.v.), on the hypotension, bradycardia and vasodilatation induced by moxonidine injected into the 4th V in normotensive rats.3 Male Wistar rats with a stainless steel cannula implanted into the 4th V and anaesthetized with urethane were used. Blood flows were recorded by use of miniature pulsed Doppler flow probes implanted around the renal, superior mesenteric and low abdominal aorta.4 Moxonidine (20 nmol), injected into the 4th V, reduced the mean arterial pressure (-42+/-3 mmHg), heart rate (-22+/-7 bpm) and renal (-62+/-15%), mesenteric (-41+/-8%) and hindquarter (-50+/-8%) vascular resistances.5 Pretreatment with L-NAME (10 nmol into the 4th V) almost abolished central moxonidine-induced hypotension (-10+/-3 mmHg) and renal (-10+/-4%), mesenteric (-11+/-4%) and hindquarter (-13+/-6%) vascular resistance reduction, but did not affect the bradycardia (-18+/-8 bpm).6 the results indicate that central NO mechanisms are involved in the vasodilatation and hypotension, but not in the bradycardia, induced by central moxonidine in normotensive rats. British Journal of Pharmacology (2004).
Resumo:
The present experiments were conducted to investigate die role of the alpha(1A)-, alpha(1B)-, beta(1)-, beta(2)-adrenoceptors, and the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) on the water and sodium intake elicited by paraventricular nucleus (PVN) injection of adrenaline. Male Holtzman rats with a stainless steel cannula implanted into the PVN were used. The ingestion of water and sodium was determined in separate groups submitted to water deprivation or sodium depletion with the diuretic furosemide (20 mg/rat). 5-Methylurapidil (an alpha(1A)-adrenergic antagonist) and ICI-118,551 (a beta(2)-adrenergic antagonist) injected into the PVN produced a dose-dependent increase, whereas cyclazosin (an alpha(1B)-adrenergic antagonist) and atenolol (a beta(1)-adrenergic antagonist) do not affect the inhibitory effect of water intake induced by adrenaline. on the other hand, the PVN administration of adrenaline increased the sodium intake in a dose-dependent manner. Previous injection of the alpha(1A) and beta(1) antagonists decreased, whereas injection of the alpha(1B) and beta(2) antagonists increased the salt intake induced by adrenaline. In rats with several doses of adrenaline into PVN, the previous administration of losartan increased in a dose-dependent manner the inhibitory effect of adrenaline and decreased the salt intake induced by adrenaline, while PVN CGP42112A was without effect. These results indicate that both appetites are mediated primarily by brain AT(1) receptors. However, the doses of losartan were more effective when combined with the doses of CGP42112A than given alone p < 0.05, suggesting that the water and salt intake effects of PVN adrenaline may involve activation of multiple angiotensin II (ANG II) receptors subtypes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated the importance of androgen on responses to alpha and beta (norepinephrine) and alpha(1) (phenylephrine and methoxamine) agonists in vasa deferentia isolated from adult, immature, cryptorchid, and castrated rats submitted to swimming-induced acute stress. The participation of adrenergic nervous terminals was also investigated. Acute stress was shown to induce a significant subsensitivity to norepinephrine only in vas deferens from adult rats with normal levels of androgens. In addition, sympathetic denervation of the vas deferens prevented the appearance of subsensitivity. Subsensitivity was not seen when the experiments were carried out using phenylephrine and methoxamine. This shows that subsensitivity to norepinephrine in this acute stress situation may depend on other factors such as neuronal uptake, but not on alpha(1)-adrenoceptor response. Thus, when animals are exposed to acute stressogenic situations, this subsensitivity requires physiological levels of androgens to establish, and may also be involved in body homeostasis. (C) 1999 Academic Press.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The central injection of clonidine (an alpha-2-adrenoceptor agonist) in conscious normotensive rats produces hypertensive responses and bradycardia. The present study was performed to investigate the effect of electrolytic lesions in the anteroventral third ventricle (AV3V) region or in the lateral hypothalamus (LH) on the pressor and bradycardic responses induced by central clonidine in rats. Mean arterial pressure and heart rate were recorded in sham or AV3V-lesioned rats with cerebral stainless steel cannulae implanted into the lateral cerebral ventricle (ICV) or LH. and in sham or bilateral LH-lesioned rats with cannulae-implanted ICV. The injection of clonidine (40 nmol) ICV or into the LH of sham rats produced a pressor response (37 +/- 2-48 +/- 3 mmHg) and bradycardia (-45 +/- 10--93 +/- 6 bpm). After AV3V-lesion (3 and 12 days) or LH-lesion (3 days) the pressor response was abolished and a small hypotensive response was induced by the injection of clonidine (-1 +/- 3--16 +/- 3 mmHg). The bradycardia (-27 +/- 6--57 +/- 11 bpm) was reduced, but not abolished by the lesions. These results show that the AV3V region and LH are important cerebral structures that participate in the excitatory pathways involved in the pressor response to central clonidine in rats. They also suggest that, in the absence of these pressor pathways, the hypotensive responses to central clonidine may appear in conscious rats.
Resumo:
The central injection of clonidine (an alpha-2-adrenoceptor agonist) in conscious normotensive rats produces hypertensive responses and bradycardia. The present study was performed to investigate the effect of electrolytic lesions of the lateral hypothalamus (LH) on the pressor and bradycardic responses induced by clonidine injected into the medial septal area (MSA) in conscious and unrestrained rats. Male Holtzman rats weighing 250-300 g were used. Mean arterial pressure and heart rate were recorded in sham- or bilateral LH-lesioned rats with a cerebral stainless steel cannula implanted into the MSA. The injection of clonidine (40 nmol/mu-l) into the MSA of sham rats (N = 8) produced a pressor response (36 +/- 7 mmHg, P<0.05) and bradycardia (-70 +/- 13 bpm, P<0.05) compared to saline. Fourteen days after LH-lesion (N = 9) the pressor response was reduced (9 +/- 10 mmHg, P<0.05) but no change was observed in the bradycardia (-107 +/- 24 bpm). These results show that LH is an important area involved in the pressor response to clonidine injected into the MSA of rats.
Resumo:
This study investigated mechanisms involved in the maintenance of the functional response pattern of the postjunctional alpha(1)-adrenoceptor in vas deferens isolated from rats submitted to acute swimming stress. The plasma corticosterone levels increased approximately three times after the swimming stress in the nontreated rats as well as after swimming stress in the rats pretreated with desipramine (DMI), yohimbine (YO), or DMI with YO. No alteration was detected in the sensitivity to norepinephrine (NE) in the vasa deferentia from the stressed rats or stressed rats treated with DMI or DMI with YO, in relation to their respective control. However, when the vasa deferentia were previously incubated with DMI, a reduction in sensitivity to NE in organs from stressed rats was observed. Vasa deferentia excised from rats pretreated with YO before the swimming stress showed an increase in postjunctional alpha(1)-response that was abolished by prazosin (PZ). Thus, the neuronal uptake, the prejunctional alpha(2)-adrenoceptors (mediating prejunctional inhibition), the occupancy and functional response of the postjunctional alpha(1)-adrenoceptors, and the emotional stress component were very important for the determination of the noradrenergic response pattern in vas deferens from rats submitted to acute swimming stress. (C) 2002 Elsevier B.V. Ltd. All rights reserved.