988 resultados para All-optical packet routing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical conversion bandwidth for an all-optical modulation format converter, based on a semiconductor laser amplifier in a nonlinear optical loop mirror (SOA-NOLM), is investigated. 4 Â 10 Gbit/s channels are all- optically converted between both non-return-to-zero (NRZ) and return-to-zero (RZ) format to carrier- suppressed return-to-zero (CSRZ). WDM transmission of the converted signals over a 194 km fibre span is then demonstrated. The receiver sensitivity for the converted four wavelengths is measured and compared after transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical conversion bandwidth for an all-optical modulation format converter, based on a semiconductor laser amplifier in a nonlinear optical loop mirror (SOA-NOLM), is investigated. 4×10 Gbit/s channels are all-optically converted between both non-return-to-zero (NRZ) and return-to-zero (RZ) format to carrier-suppressed return-to-zero (CSRZ). WDM transmission of the converted signals over a 194 km fibre span is then demonstrated. The receiver sensitivity for the converted four wavelengths is measured and compared after transmission. © 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel architecture for all-optical add-drop multiplexing of OFDM signals. Extensive numerical simulations have been carried out to benchmark the performance of the architecture against critical design parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the principle of quasi-continuous filtering in a non-linear fibre, we propose an optical device for the simultaneous regeneration of sevaral channels at 40 Gbit/s. Simulations predict an improvement of the signal quality for four channels by more than 6.8 dB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review recent advances in all-optical OFDM technologies and discuss the performance of a field trial of a 2 Tbit/s Coherent WDM over 124 km with distributed Raman amplification. The results indicate that careful optimisation of the Raman pumps is essential. We also consider how all-optical OFDM systems perform favourably against energy consumption when compared with alternative coherent detection schemes. We argue that, in an energy constrained high-capacity transmission system, direct detected all-optical OFDM with `ideal' Raman amplification is an attractive candidate for metro area datacentre interconnects with ~100 km fibre spans, with an overall energy requirement at least three times lower than coherent detection techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the recently proposed architecture for an all-optical add-drop multiplexer of OFDM signals and we summarize the results of its theoretical design and experimental implementation. © 2015 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We summarize our research work on the design and development of an add-drop multiplexer for spectrally overlapping OFDM signals. The standard node functions of sub-channel drop, extraction and insertion were obtained whilst the signals remained fully in the optical domain. Numerical simulations have been carried out to identify the main sources of degradation and to benchmark the architectural performance against critical design parameters, whereas the experimental demonstration of the scheme has been achieved for both single quadrature and dual quadrature signals. The reported scheme enables a fully flexible node compatible with future terabit per second super-channel transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel architecture for all-optical add-drop multiplexing of OFDM signals. Sub-channel extraction is achieved by means of waveform replication and coherent subtraction from the OFDM super-channel. Numerical simulations have been carried out to benchmark the performance of the architecture against critical design parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the use of the 2-D differential decoding to improve the robustness of dual-polarization optical packet receivers and is demonstrated in a wavelength switching scenario for the first time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate cascaded 100-Gb/s sub-channel add/drop from a 1-Tb/s multi-band OFDM super-channel having 2-GHz inter-sub-channel guard-bands within a recirculating loop via a hierarchical ROADM using high-resolution filters, showcasing 1000-km transmission reach and five ROADM node passages for the add/drop sub-channel when hybrid Raman-EDFA is implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input- output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings. © 2015 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

WDM (Wavelength-Division Multiplexing) optiset verkot on tällä hetkellä suosituin tapa isojen määrän tietojen siirtämiseen. Jokaiselle liittymälle määrätään reitin ja aallonpituus joka linkin varten. Tarvittavan reitin ja aallon pituuden löytäminen kutsutaan RWA-ongelmaksi. Tämän työn kuvaa mahdollisia kustannuksen mallein ratkaisuja RWA-ongelmaan. Olemassa on paljon erilaisia optimoinnin tavoitteita. Edellä mainittuja kustannuksen malleja perustuu näillä tavoitteilla. Kustannuksen malleja antavat tehokkaita ratkaisuja ja algoritmeja. The multicommodity malli on käsitelty tässä työssä perusteena RV/A-kustannuksen mallille. Myöskin OB käsitelty heuristisia menetelmiä RWA-ongelman ratkaisuun. Työn loppuosassa käsitellään toteutuksia muutamalle mallille ja erilaisia mahdollisuuksia kustannuksen mallein parantamiseen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world of communication has changed quickly in the last decade resulting in the the rapid increase in the pace of peoples’ lives. This is due to the explosion of mobile communication and the internet which has now reached all levels of society. With such pressure for access to communication there is increased demand for bandwidth. Photonic technology is the right solution for high speed networks that have to supply wide bandwidth to new communication service providers. In particular this Ph.D. dissertation deals with DWDM optical packet-switched networks. The issue introduces a huge quantity of problems from physical layer up to transport layer. Here this subject is tackled from the network level perspective. The long term solution represented by optical packet switching has been fully explored in this years together with the Network Research Group at the department of Electronics, Computer Science and System of the University of Bologna. Some national as well as international projects supported this research like the Network of Excellence (NoE) e-Photon/ONe, funded by the European Commission in the Sixth Framework Programme and INTREPIDO project (End-to-end Traffic Engineering and Protection for IP over DWDM Optical Networks) funded by the Italian Ministry of Education, University and Scientific Research. Optical packet switching for DWDM networks is studied at single node level as well as at network level. In particular the techniques discussed are thought to be implemented for a long-haul transport network that connects local and metropolitan networks around the world. The main issues faced are contention resolution in a asynchronous variable packet length environment, adaptive routing, wavelength conversion and node architecture. Characteristics that a network must assure as quality of service and resilience are also explored at both node and network level. Results are mainly evaluated via simulation and through analysis.