1000 resultados para Algoritmos genéticos -- TFM


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Computação Evolutiva enquadra-se na área da Inteligência Artificial e é um ramo das ciências da computação que tem vindo a ser aplicado na resolução de problemas em diversas áreas da Engenharia. Este trabalho apresenta o estado da arte da Computação Evolutiva, assim como algumas das suas aplicações no ramo da eletrónica, denominada Eletrónica Evolutiva (ou Hardware Evolutivo), enfatizando a síntese de circuitos digitais combinatórios. Em primeiro lugar apresenta-se a Inteligência Artificial, passando à Computação Evolutiva, nas suas principais vertentes: os Algoritmos Evolutivos baseados no processo da evolução das espécies de Charles Darwin e a Inteligência dos Enxames baseada no comportamento coletivo de alguns animais. No que diz respeito aos Algoritmos Evolutivos, descrevem-se as estratégias evolutivas, a programação genética, a programação evolutiva e com maior ênfase, os Algoritmos Genéticos. Em relação à Inteligência dos Enxames, descreve-se a otimização por colônia de formigas e a otimização por enxame de partículas. Em simultâneo realizou-se também um estudo da Eletrónica Evolutiva, explicando sucintamente algumas das áreas de aplicação, entre elas: a robótica, as FPGA, o roteamento de placas de circuito impresso, a síntese de circuitos digitais e analógicos, as telecomunicações e os controladores. A título de concretizar o estudo efetuado, apresenta-se um caso de estudo da aplicação dos algoritmos genéticos na síntese de circuitos digitais combinatórios, com base na análise e comparação de três referências de autores distintos. Com este estudo foi possível comparar, não só os resultados obtidos por cada um dos autores, mas também a forma como os algoritmos genéticos foram implementados, nomeadamente no que diz respeito aos parâmetros, operadores genéticos utilizados, função de avaliação, implementação em hardware e tipo de codificação do circuito.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Civil - Perfil Geotecnia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Civil - Perfil Estruturas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pretende-se estudar a utilização de um método analítico relativamente básico para cál-culo de deformações em treliças com vãos consideravelmente longos, com o intuito de ajudar o projetista a conceber um futuro projeto antes de conhecer a geometria da estrutura reticulada as-sim como as áreas de secção transversal dos elementos que a compõe. Numa primeira fase é avaliado o grau de aproximação à realidade do método analítico, e numa segunda fase é avaliado o ganho que pode ser obtido por utilização de métodos numéricos, podendo esta dissertação ser dividida em duas partes:  Uma análise estrutural comparativa entre um método analítico aproximado para o cálculo de deformações em treliças e um método numérico obtido a partir de um programa for-mulado para se usar em MATLAB, o PROAES, com o objetivo de avaliar a sua aderência à realidade;  Otimização dessas estruturas, primeiro de topologia para definir quais os elementos que serão necessários para a composição geométrica da treliça e em seguida uma combinação de otimização dimensional com otimização de forma para definir o valor das áreas de secção transversal de cada um dos elementos e a posição dos nós que os unem. Pretende-se também salientar a importância da carga crítica em estruturas do tipo tre-liça, nos elementos sujeitos a esforços normais de compressão, e qual a influência na geometria da estrutura e nas suas dimensões. O programa PROAES torna-se vantajoso face a outros algoritmos de otimização porque tem em conta as derivadas dos constrangimentos em ordem às variáveis consideradas no projeto, o que para além de acelerar o processo de otimização a nível informático, torna-se mais focado na procura de uma solução, na medida em que é um método determinístico e não aleatório, como é o caso, por exemplo, do método dos algoritmos genéticos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forest fires are a serious threat to humans and nature from an ecological, social and economic point of view. Predicting their behaviour by simulation still delivers unreliable results and remains a challenging task. Latest approaches try to calibrate input variables, often tainted with imprecision, using optimisation techniques like Genetic Algorithms. To converge faster towards fitter solutions, the GA is guided with knowledge obtained from historical or synthetical fires. We developed a robust and efficient knowledge storage and retrieval method. Nearest neighbour search is applied to find the fire configuration from knowledge base most similar to the current configuration. Therefore, a distance measure was elaborated and implemented in several ways. Experiments show the performance of the different implementations regarding occupied storage and retrieval time with overly satisfactory results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La finalitat d'aquest projecte és la realització d'un estudi comparatiu de l'algoritme basat en una colònia artificial d'abelles, Artificial Bee Colony (ABC), comparat amb un conjunt d'algoritmes fonamentats en el paradigma de la computació evolutiva. S'utilitzarà l'eficàcia a l'hora d'optimitzar diverses funcions com a mesura comparativa. Els algoritmes amb els quals es comparara l'algoritme ABC són: algoritmes genètics, evolució diferencial i optimització amb eixam de partícules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

objetivo de minimizar el retraso total en un ambiente con preparaciones quedependen de la secuencia. Se comparan los resultados obtenidos mediante laaplicación de los procedimientos de exploración de entornos AED, ANED,Recocido Simulado, Algoritmos Genéticos, Búsqueda Tabú y GRASP alproblema planteado. Los resultados sugieren que la Búsqueda Tabú es unatécnica viable de solución que puede proporcionar buenas soluciones cuandose considera el objetivo retraso total con tiempos de preparación dependientesde la secuencia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os objetivos deste trabalho foram desenvolver e testar um algoritmo genético (AG) para a solução de problemas de gerenciamento florestal com restrições de integridade. O AG foi testado em quatro problemas, contendo entre 93 e 423 variáveis de decisão, sujeitos às restrições de singularidade, produção mínima e produção máxima, periodicamente. Todos os problemas tiveram como objetivo a maximização do valor presente líquido. O AG foi codificado em ambiente delphi 5.0 e os testes foram realizados em um microcomputador AMD K6II 500 MHZ, com memória RAM de 64 MB e disco rígido de 15GB. O desempenho do AG foi avaliado de acordo com as medidas de eficácia e eficiência. Os valores ou categorias dos parâmetros do AG foram testados e comparados quanto aos seus efeitos na eficácia do algoritmo. A seleção da melhor configuração de parâmetros foi feita com o teste L&O, a 1% de probabilidade, e as análises foram realizadas através de estatísticas descritivas. A melhor configuração de parâmetros propiciou ao AG eficácia média de 94,28%, valor mínimo de 90,01%, valor máximo de 98,48%, com coeficiente de variação de 2,08% do ótimo matemático, obtido pelo algoritmo exato branch and bound. Para o problema de maior porte, a eficiência do AG foi cinco vezes superior à eficiência do algoritmo exato branch and bound. O AG apresentou-se como uma abordagem bastante atrativa para solução de importantes problemas de gerenciamento florestal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar uma estratégia utilizada para geração de alternativas de manejo na formulação e solução de problemas de planejamento florestal com restrições de recobrimento. O problema de planejamento florestal foi formulado via modelo I e modelo II, assim denominados por Johnson E Scheurman (1977), resultando em problemas de programação linear inteira com 63 e 42 alternativas de manejo, respectivamente. Conforme esperado, no problema formulado via modelo I não houve violação das restrições de recobrimento, enquanto no problema formulado via modelo II algumas unidades de manejo foram fracionadas, fato já esperado, uma vez que essa formulação não assegura a integridade das unidades de manejo. Na formulação via modelo II, para assegurar a integridade das unidades de manejo foi necessário reformular o problema como um problema de programação não-linear inteira, problema esse de solução ainda mais complexa do que os de programação linear inteira. As soluções eficientes dos problemas de programação não-linear inteira esbarram nas limitações de eficiências dos principais algoritmos de solução exata e na carência de aplicações dos algoritmos aproximativos na solução desse tipo de problema, a exemplo das metaeurísticas simulated annealing, busca tabu e algoritmos genéticos, tornando-se, portanto, um atrativo para pesquisas nessa área.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atualmente vêm sendo desenvolvidas e utilizadas várias técnicas de modelagem de distribuição geográfica de espécies com os mais variados objetivos. Algumas dessas técnicas envolvem modelagem baseada em análise ambiental, nas quais os algoritmos procuram por condições ambientais semelhantes àquelas onde as espécies foram encontradas, resultando em áreas potenciais onde as condições ambientais seriam propícias ao desenvolvimento dessas espécies. O presente estudo trata do uso da modelagem preditiva de distribuição geográfica de espécies nativas, através da utilização de algoritmo genético, como ferramenta para auxiliar o entendimento dos padrões de distribuição do bioma cerrado no Estado de São Paulo. A metodologia empregada e os resultados obtidos foram considerados satisfatórios para a geração de modelos de distribuição geográfica de espécies vegetais, baseados em dados abióticos, para as regiões de estudo. A eficácia do modelo em predizer a ocorrência de espécies do cerrado é maior se forem utilizados apenas pontos de amostragem com fisionomias de cerrado, excluindo-se áreas de transição. Para minimizar problemas decorrentes da falta de convergência do algoritmo utilizado GARP ("Genetic Algorithm for Rule Set Production"), foram gerados 100 modelos para cada espécie modelada. O uso de modelagem pode auxiliar no entendimento dos padrões de distribuição de um bioma ou ecossistema em uma análise regional.