921 resultados para Algebraic Curve
Resumo:
To investigate the nature of the curve of critical exponents (as a function of the distance from a double critical point), we have combined our measurements of the osmotic compressibility with all published data for quasibinary liquid mixtures. This curve has a parabolic shape. An explanation of this result is advanced in terms of the geometry of the coexistence dome, which is contained in a triangular prism.
Resumo:
Let O be a monomial curve in the affine algebraic e-space over a field K and P be the relation ideal of O. If O is defined by a sequence of e positive integers some e - 1 of which form an arithmetic sequence then we construct a minimal set of generators for P and write an explicit formula for mu(P).
Resumo:
Many previous studies regarding the estimation of mechanical properties of single walled carbon nanotubes (SWCNTs) report that, the modulus of SWCNTs is chirality, length and diameter dependent. Here, this dependence is quantitatively described in terms of high accuracy curve fit equations. These equations allow us to estimate the modulus of long SWCNTs (lengths of about 100-120 nm) if the value at the prescribed low lengths (lengths of about 5-10 nm) is known. This is supposed to save huge computational time and expense. Also, based on the observed length dependent behavior of SWCNT initial modulus, we predict that, SWCNT mechanical properties such as Young's modulus, secant modulus, maximum tensile strength, failure strength, maximum tensile strain and failure strain might also exhibit the length dependent behavior along with chirality and length dependence. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A clear definition of an approximate parametrization of the curve of intersection of (n-1) implicit surfaces in Rn is given. It is justified that marching methods yield such an approximation.
Resumo:
We discuss three methods to correct spherical aberration for a point to point imaging system. First, results obtained using Fermat's principle and the ray tracing method are described briefly. Next, we obtain solutions using Lie algebraic techniques. Even though one cannot always obtain analytical results using this method, it is often more powerful than the first method. The result obtained with this approach is compared and found to agree with the exact result of the first method.
Resumo:
There exists a maximum in the products of the saturation properties such as T(p(c) - p) and p(T-c - T) in the vapour-liquid coexistence region for all liquids. The magnitudes of those maxima on the reduced coordinate system provide an insight to the molecular complexity of the liquid. It is shown that the gradients of the vapour pressure curve at temperatures where those maxima occur are directly given by simple relations involving the reduced pressures and temperatures at that point. A linear relation between the maximum values of those products of the form [p(r)(1 - T-r)](max) = 0.2095 - 0.2415 [T-r(1 - p(r))](max) has been found based on a study of 55 liquids ranging from non-polar monatomic cryogenic liquids to polar high boiling point liquids.
Resumo:
A method has been presented to establish the theoretical dispersion curve for performing the inverse analysis for the Rayleigh wave propagation. The proposed formulation is similar to the one available in literature, and is based on the finite difference formulation of the governing partial differential equations of motion. The method is framed in such a way that it ultimately leads to an Eigen value problem for which the solution can be obtained quite easily with respect to unknown frequency. The maximum absolute value of the vertical displacement at the ground surface is formed as the basis for deciding the governing mode of propagation. With the proposed technique, the numerical solutions were generated for a variety of problems, comprising of a number of different layers, associated with both ground and pavements. The results are found to be generally satisfactory. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper brings out the existence of the maximum in the curvature of the vapour pressure curve. It occurs in the reduced temperature range of 0.6–0.7 for all liquids and has a value of 3.8–4.8. A set of 17 working fluids consisting of several refrigerants, carbon dioxide, cryogenic liquids and water are taken as test fluids. There exists also a minimum close to the critical point which can be observed only when a thermodynamically consistent functional form of the vapour pressure equation is chosen. This feature, in addition to throwing some light on the behaviour of the vapour pressure curve, could provide some useful inputs to the choice of working fluids for vapour pressure thermometers and thermostatic expansion valves.
Resumo:
To realistically simulate the motion of flexible objects such as ropes, strings, snakes, or human hair,one strategy is to discretise the object into a large number of small rigid links connected by rotary or spherical joints. The discretised system is highly redundant and the rotations at the joints (or the motion of the other links) for a desired Cartesian motion of the end of a link cannot be solved uniquely. In this paper, we propose a novel strategy to resolve the redundancy in such hyper-redundant systems.We make use of the classical tractrix curve and its attractive features. For a desired Cartesian motion of the `head'of a link, the `tail' of the link is moved according to a tractrix,and recursively all links of the discretised objects are moved along different tractrix curves. We show that the use of a tractrix curve leads to a more `natural' motion of the entire object since the motion is distributed uniformly along the entire object with the displacements tending to diminish from the `head' to the `tail'. We also show that the computation of the motion of the links can be done in real time since it involves evaluation of simple algebraic, trigonometric and hyperbolic functions. The strategy is illustrated by simulations of a snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.