962 resultados para Algebraic ANRs
Resumo:
This thesis studies the properties and usability of operators called t-norms, t-conorms, uninorms, as well as many valued implications and equivalences. Into these operators, weights and a generalized mean are embedded for aggregation, and they are used for comparison tasks and for this reason they are referred to as comparison measures. The thesis illustrates how these operators can be weighted with a differential evolution and aggregated with a generalized mean, and the kinds of measures of comparison that can be achieved from this procedure. New operators suitable for comparison measures are suggested. These operators are combination measures based on the use of t-norms and t-conorms, the generalized 3_-uninorm and pseudo equivalence measures based on S-type implications. The empirical part of this thesis demonstrates how these new comparison measures work in the field of classification, for example, in the classification of medical data. The second application area is from the field of sports medicine and it represents an expert system for defining an athlete's aerobic and anaerobic thresholds. The core of this thesis offers definitions for comparison measures and illustrates that there is no actual difference in the results achieved in comparison tasks, by the use of comparison measures based on distance, versus comparison measures based on many valued logical structures. The approach has been highly practical in this thesis and all usage of the measures has been validated mainly by practical testing. In general, many different types of operators suitable for comparison tasks have been presented in fuzzy logic literature and there has been little or no experimental work with these operators.
Resumo:
Classical relational databases lack proper ways to manage certain real-world situations including imprecise or uncertain data. Fuzzy databases overcome this limitation by allowing each entry in the table to be a fuzzy set where each element of the corresponding domain is assigned a membership degree from the real interval [0…1]. But this fuzzy mechanism becomes inappropriate in modelling scenarios where data might be incomparable. Therefore, we become interested in further generalization of fuzzy database into L-fuzzy database. In such a database, the characteristic function for a fuzzy set maps to an arbitrary complete Brouwerian lattice L. From the query language perspectives, the language of fuzzy database, FSQL extends the regular Structured Query Language (SQL) by adding fuzzy specific constructions. In addition to that, L-fuzzy query language LFSQL introduces appropriate linguistic operations to define and manipulate inexact data in an L-fuzzy database. This research mainly focuses on defining the semantics of LFSQL. However, it requires an abstract algebraic theory which can be used to prove all the properties of, and operations on, L-fuzzy relations. In our study, we show that the theory of arrow categories forms a suitable framework for that. Therefore, we define the semantics of LFSQL in the abstract notion of an arrow category. In addition, we implement the operations of L-fuzzy relations in Haskell and develop a parser that translates algebraic expressions into our implementation.
Resumo:
Cryptosystem using linear codes was developed in 1978 by Mc-Eliece. Later in 1985 Niederreiter and others developed a modified version of cryptosystem using concepts of linear codes. But these systems were not used frequently because of its larger key size. In this study we were designing a cryptosystem using the concepts of algebraic geometric codes with smaller key size. Error detection and correction can be done efficiently by simple decoding methods using the cryptosystem developed. Approach: Algebraic geometric codes are codes, generated using curves. The cryptosystem use basic concepts of elliptic curves cryptography and generator matrix. Decrypted information takes the form of a repetition code. Due to this complexity of decoding procedure is reduced. Error detection and correction can be carried out efficiently by solving a simple system of linear equations, there by imposing the concepts of security along with error detection and correction. Results: Implementation of the algorithm is done on MATLAB and comparative analysis is also done on various parameters of the system. Attacks are common to all cryptosystems. But by securely choosing curve, field and representation of elements in field, we can overcome the attacks and a stable system can be generated. Conclusion: The algorithm defined here protects the information from an intruder and also from the error in communication channel by efficient error correction methods.
Resumo:
This thesis Entitled Spectral theory of bounded self-adjoint operators -A linear algebraic approach.The main results of the thesis can be classified as three different approaches to the spectral approximation problems. The truncation method and its perturbed versions are part of the classical linear algebraic approach to the subject. The usage of block Toeplitz-Laurent operators and the matrix valued symbols is considered as a particular example where the linear algebraic techniques are effective in simplifying problems in inverse spectral theory. The abstract approach to the spectral approximation problems via pre-conditioners and Korovkin-type theorems is an attempt to make the computations involved, well conditioned. However, in all these approaches, linear algebra comes as the central object. The objective of this study is to discuss the linear algebraic techniques in the spectral theory of bounded self-adjoint operators on a separable Hilbert space. The usage of truncation method in approximating the bounds of essential spectrum and the discrete spectral values outside these bounds is well known. The spectral gap prediction and related results was proved in the second chapter. The discrete versions of Borg-type theorems, proved in the third chapter, partly overlap with some known results in operator theory. The pure linear algebraic approach is the main novelty of the results proved here.
Resumo:
Communication is the process of transmitting data across channel. Whenever data is transmitted across a channel, errors are likely to occur. Coding theory is a stream of science that deals with finding efficient ways to encode and decode data, so that any likely errors can be detected and corrected. There are many methods to achieve coding and decoding. One among them is Algebraic Geometric Codes that can be constructed from curves. Cryptography is the science ol‘ security of transmitting messages from a sender to a receiver. The objective is to encrypt message in such a way that an eavesdropper would not be able to read it. A eryptosystem is a set of algorithms for encrypting and decrypting for the purpose of the process of encryption and decryption. Public key eryptosystem such as RSA and DSS are traditionally being prel‘en‘ec| for the purpose of secure communication through the channel. llowever Elliptic Curve eryptosystem have become a viable altemative since they provide greater security and also because of their usage of key of smaller length compared to other existing crypto systems. Elliptic curve cryptography is based on group of points on an elliptic curve over a finite field. This thesis deals with Algebraic Geometric codes and their relation to Cryptography using elliptic curves. Here Goppa codes are used and the curves used are elliptic curve over a finite field. We are relating Algebraic Geometric code to Cryptography by developing a cryptographic algorithm, which includes the process of encryption and decryption of messages. We are making use of fundamental properties of Elliptic curve cryptography for generating the algorithm and is used here to relate both.
Resumo:
We give a proof of Iitaka's conjecture C2,1 using only elementary methods from algebraic geometry.
Resumo:
This thesis work is dedicated to use the computer-algebraic approach for dealing with the group symmetries and studying the symmetry properties of molecules and clusters. The Maple package Bethe, created to extract and manipulate the group-theoretical data and to simplify some of the symmetry applications, is introduced. First of all the advantages of using Bethe to generate the group theoretical data are demonstrated. In the current version, the data of 72 frequently applied point groups can be used, together with the data for all of the corresponding double groups. The emphasize of this work is placed to the applications of this package in physics of molecules and clusters. Apart from the analysis of the spectral activity of molecules with point-group symmetry, it is demonstrated how Bethe can be used to understand the field splitting in crystals or to construct the corresponding wave functions. Several examples are worked out to display (some of) the present features of the Bethe program. While we cannot show all the details explicitly, these examples certainly demonstrate the great potential in applying computer algebraic techniques to study the symmetry properties of molecules and clusters. A special attention is placed in this thesis work on the flexibility of the Bethe package, which makes it possible to implement another applications of symmetry. This implementation is very reasonable, because some of the most complicated steps of the possible future applications are already realized within the Bethe. For instance, the vibrational coordinates in terms of the internal displacement vectors for the Wilson's method and the same coordinates in terms of cartesian displacement vectors as well as the Clebsch-Gordan coefficients for the Jahn-Teller problem are generated in the present version of the program. For the Jahn-Teller problem, moreover, use of the computer-algebraic tool seems to be even inevitable, because this problem demands an analytical access to the adiabatic potential and, therefore, can not be realized by the numerical algorithm. However, the ability of the Bethe package is not exhausted by applications, mentioned in this thesis work. There are various directions in which the Bethe program could be developed in the future. Apart from (i) studying of the magnetic properties of materials and (ii) optical transitions, interest can be pointed out for (iii) the vibronic spectroscopy, and many others. Implementation of these applications into the package can make Bethe a much more powerful tool.
Resumo:
Let G be finite group and K a number field or a p-adic field with ring of integers O_K. In the first part of the manuscript we present an algorithm that computes the relative algebraic K-group K_0(O_K[G],K) as an abstract abelian group. We solve the discrete logarithm problem, both in K_0(O_K[G],K) and the locally free class group cl(O_K[G]). All algorithms have been implemented in MAGMA for the case K = \IQ. In the second part of the manuscript we prove formulae for the torsion subgroup of K_0(\IZ[G],\IQ) for large classes of dihedral and quaternion groups.
Resumo:
The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.
Resumo:
This paper presents an image-based rendering system using algebraic relations between different views of an object. The system uses pictures of an object taken from known positions. Given three such images it can generate "virtual'' ones as the object would look from any position near the ones that the two input images were taken from. The extrapolation from the example images can be up to about 60 degrees of rotation. The system is based on the trilinear constraints that bind any three view so fan object. As a side result, we propose two new methods for camera calibration. We developed and used one of them. We implemented the system and tested it on real images of objects and faces. We also show experimentally that even when only two images taken from unknown positions are given, the system can be used to render the object from other view points as long as we have a good estimate of the internal parameters of the camera used and we are able to find good correspondence between the example images. In addition, we present the relation between these algebraic constraints and a factorization method for shape and motion estimation. As a result we propose a method for motion estimation in the special case of orthographic projection.
Resumo:
We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).
Resumo:
Resumen basado en el de la publicación