935 resultados para Algebra of differential operators
Resumo:
Loss of chromosome 10 represents the most common cytogenetic abnormality in high grade gliomas (glioblastoma multiforme). To identify genes involved in the malignant progression of human gliomas, a subtractive hybridization was performed between a tumorigenic glioblastoma cell line (LG11) and a nontumorgenic hybrid cell (LG11.3) containing an introduced chromosome 10. LG11 mRNA was subtracted from LG11.3 cDNA to produce cDNA probes enriched for sequences whose expression differs quantitatively from the parental tumorigenic cells. Both known and novel sequences were identified as a result of the subtraction. Northern blot analysis was then used to confirm differential expression of several subtracted clones. One novel clone, clone 17, identified a 2.6 kb message that showed a consistent two to four fold increase in expression in the LG11.3 nontumorigenic cells. Clone 17 (340 bp) was used successfully to screen for a near full-length version, RIG (regulated in glioma), which was 2,569 bp in size. The RIG cDNA sequence showed homology to clone 17 and to an anonymous EST (IB666), but to no previously identified genes. This screening effort also identified several independent clones representing novel sequences, most of which failed to show increased expression in the nontumorigenic GBM cells. Tissue distribution studies of RIG indicated highest levels of expression in human brain with appreciably lower levels in heart and lung. In vitro transcription and translation experiments demonstrated the ability of RIG to direct the synthesis of a 13 kD protein product. However, open reading frame analysis revealed no identify with previously described motifs or any known proteins. Using a combination of somatic cell hybrid panels and in situ hybridization, the RIG gene was mapped to chromosome 11p14-11p15. Further study of RIG and related gene products may provide insight into the negative regulation of glial oncogenesis. ^
Resumo:
An elementary algebra identifies conceptual and corresponding applicational limitations in John Kemeny and Paul Oppenheim’s (K-O) 1956 model of theoretical reduction in the sciences. The K-O model was once widely accepted, at least in spirit, but seems afterward to have been discredited, or in any event superceeded. Today, the K-O reduction model is seldom mentioned, except to clarify when a reduction in the Kemeny-Oppenheim sense is not intended. The present essay takes a fresh look at the basic mathematics of K-O comparative vocabulary theoretical term reductions, from historical and philosophical standpoints, as a contribution to the history of the philosophy of science. The K-O theoretical reduction model qualifies a theory replacement as a successful reduction when preconditions of explanatory adequacy and comparable systematicization are met, and there occur fewer numbers of theoretical terms identified as replicable syntax types in the most economical statement of a theory’s putative propositional truths, as compared with the theoretical term count for the theory it replaces. The challenge to the historical model developed here, to help explain its scope and limitations, involves the potential for equivocal theoretical meanings of multiple theoretical term tokens of the same syntactical type.
Resumo:
Measurements of differential production cross-sections of a Z boson in association with b-jets in pp collisions at √s = 7TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb−1 recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a Z boson decaying into an electron or muon pair, and containing b-jets. For events with at least one b-jet, the cross-section is presented as a function of the Z boson transverse momentum and rapidity, together with the inclusive b-jet cross-section as a function of b-jet transverse momentum, rapidity and angular separations between the b-jet and the Z boson. For events with at least two b-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum b-jets, and as a function of the Z boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.
Resumo:
A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent experiments have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions. Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Aar Massif, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion studies. Application of this new paleopiezometer approach to the Grimsel vein yields a differential stress (σ1–σ3σ1–σ3) of ∼300 MPa∼300 MPa at View the MathML source390±30°C during late Miocene NNW–SSE orogenic shortening and regional uplift of the Aar Massif. This differential stress resulted in strain-hardening of the quartz at very low total strain (<5%<5%) while nearby shear zones were accommodating significant displacements. Further implementation of these experimentally derived rules should provide new insight into processes of fluid–rock interaction in the ductile regime within the Earth's crust.
Resumo:
This paper analyzes the noise and gain measurement of microwave differential amplifiers using two passive baluns. A general model of the baluns is considered, including potential losses and phase/amplitude unbalances. This analysis allows de-embedding the actual gain and noise performance of the isolated amplifier by using single-ended measurements of the cascaded system and baluns. Finally, measured results from two amplifier prototypes are used to validate the theoretical principles.
Resumo:
This article aims to quantify the efficiency of mobile operators in Spain and other European countries such as France and Germany. The period considered is from 2002 to 2008. Linear regression is used to analyze the relationship between growth in revenue and gross operating margin (EBITDA) generated by the relevant operators and the aggregate industry in each country. At the industry level, it is shown that (i) there is a strong correlation between revenue and margin; and (ii) this correlation weakens when competitive intensity grows. At the operator level, those which achieved larger increases in revenues did not sacrifice their margins, but offset the additional investments and costs required to achieve said growth through economies of scale.
Resumo:
Cartilage matrix protein (CMP) is the prototype of the newly discovered matrilin family, all of which contain von Willebrand factor A domains. Although the function of matrilins remain unclear, we have shown that, in primary chondrocyte cultures, CMP (matrilin-1) forms a filamentous network, which is made up of two types of filaments, a collagen-dependent one and a collagen-independent one. In this study, we demonstrate that the collagen-independent CMP filaments are enriched in pericellular compartments, extending directly from chondrocyte membranes. Their morphology can be distinguished from that of collagen filaments by immunogold electron microscopy, and mimicked by that of self-assembled purified CMP. The assembly of CMP filaments can occur from transfection of a wild-type CMP transgene alone in skin fibroblasts, which do not produce endogenous CMP. Conversely, assembly of endogenous CMP filaments by chondrocytes can be inhibited specifically by dominant negative CMP transgenes. The two A domains within CMP serve essential but different functions during network formation. Deletion of the A2 domain converts the trimeric CMP into a mixture of monomers, dimers, and trimers, whereas deletion of the A1 domain does not affect the trimeric configuration. This suggests that the A2 domain modulates multimerization of CMP. Absence of either A domain from CMP abolishes its ability to form collagen-independent filaments. In particular, Asp22 in A1 and Asp255 in A2 are essential; double point mutation of these residues disrupts CMP network formation. These residues are part of the metal ion–dependent adhesion sites, thus a metal ion–dependent adhesion site–mediated adhesion mechanism may be applicable to matrilin assembly. Taken together, our data suggest that CMP is a bridging molecule that connects matrix components in cartilage to form an integrated matrix network.
Resumo:
We used differential display analysis to identify mRNAs that accumulate to enhanced levels in human cytomegalovirus-infected cells as compared with mock-infected cells. RNAs were compared at 8 hr after infection of primary human fibroblasts. Fifty-seven partial cDNA clones were isolated, representing about 26 differentially expressed mRNAs. Eleven of the mRNAs were virus-coded, and 15 were of cellular origin. Six of the partial cDNA sequences have not been reported previously. All of the cellular mRNAs identified in the screen are induced by interferon α. The induction in virus-infected cells, however, does not involve the action of interferon or other small signaling molecules. Neutralizing antibodies that block virus infection also block the induction. These RNAs accumulate after infection with virus that has been inactivated by treatment with UV light, indicating that the inducer is present in virions. We conclude that human cytomegalovirus induces interferon-responsive mRNAs.
Resumo:
We have developed an approach to study changes in gene expression by selective PCR amplification and display of 3' end restriction fragments of double-stranded cDNAs. This method produces highly consistent and reproducible patterns, can detect almost all mRNAs in a sample, and can resolve hidden differences such as bands that differ in their sequence but comigrate on a gel. Bands corresponding to known cDNAs move to predictable positions on the gel, making this a powerful approach to correlate gel patterns with cDNA data bases. Applying this method, we have examined differences in gene expression patterns during T-cell activation. Of a total of 700 bands that were evaluated in this study, as many as 3-4% represented mRNAs that are upregulated, while approximately 2% were down-regulated within 4 hr of activation of Jurkat T cells. These and other results suggest that this approach is suitable for the systematic, expeditious, and nearly exhaustive elucidation of subtle changes in the patterns of gene expression in cells with altered physiologic states.
Resumo:
Nerve growth factor-induced differentiation of adrenal chromaffin PC-12 cells to a neuronal phenotype involves alterations in gene expression and represents a model system to study neuronal differentiation. We have used the expressed-sequence-tag approach to identify approximately 600 differentially expressed mRNAs in untreated and nerve growth factor-treated PC-12 cells that encode proteins with diverse structural and biochemical functions. Many of these mRNAs encode proteins belonging to cellular pathways not previously known to be regulated by nerve growth factor. Comparative expressed-sequence-tag analysis provides a basis for surveying global changes in gene-expression patterns in response to biological signals at an unprecedented scale, is a powerful tool for identifying potential interactions between different cellular pathways, and allows the gene-expression profiles of individual genes belonging to a particular pathway to be followed.
Resumo:
Thesis (Master, Mathematics & Statistics) -- Queen's University, 2016-07-04 20:27:20.386
Resumo:
No abstract.
Resumo:
Cover title.