818 resultados para Air science education
Resumo:
Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
Metacognition is the understanding and control of cognitive processes. Students with high levels of metacognition achieve greater academic success. The purpose of this mixed-methods study was to examine elementary teachers’ beliefs about metacognition and integration of metacognitive practices in science. Forty-four teachers were recruited through professional networks to complete a questionnaire containing open-ended questions (n = 44) and Likert-type items (n = 41). Five respondents were selected to complete semi-structured interviews informed by the questionnaire. The selected interview participants had a minimum of three years teaching experience and demonstrated a conceptual understanding of metacognition. Statistical tests (Pearson correlation, t-tests, and multiple regression) on quantitative data and thematic analysis of qualitative data indicated that teachers largely understood metacognition but had some gaps in their understanding. Participants’ reported actions (teaching practices) and beliefs differed according to their years of experience but not gender. Hierarchical multiple regression demonstrated that the first block of gender and experience was not a significant predictor of teachers' metacognitive actions, although experience was a significant predictor by itself. Experience was not a significant predictor once teachers' beliefs were added. The majority of participants indicated that metacognition was indeed appropriate for elementary students. Participants consistently reiterated that students’ metacognition developed with practice, but required explicit instruction. A lack of consensus remained around the domain specificity of metacognition. More specifically, the majority of questionnaire respondents indicated that metacognitive strategies could not be used across subject domains, whereas all interviewees indicated that they used strategies across subjects. Metacognition was integrated frequently into Ontario elementary classrooms; however, metacognition was integrated less frequently in science lessons. Lastly, participants used a variety of techniques to integrate metacognition into their classrooms. Implications for practice include the need for more professional development aimed at integrating metacognition into science lessons at both the Primary and Junior levels. Further, teachers could benefit from additional clarification on the three main components of metacognition and the need to integrate all three to successfully develop students’ metacognition.
Resumo:
The QUT Extreme Science and Engineering program provides free hands-on workshops to schools, presented by scientists and engineers to students from prep to year 12 in their own classrooms. The workshops are tied to the school curriculum and give students access to professional quality instruments, helping to stimulate their interest in science and engineering, with the aim of generating a greater take up of STEM related subjects in the senior high school years. In addition to engaging students in activities, workshop presenters provide role models of both genders, helping to breakdown preconceived ideas of the type of person who becomes a scientist or engineer and demystifying the university experience. The Extreme Science and Engineering vans have been running for 10 years and as such demonstrate a sustainable and reproducible model for schools engagement. With funding provided through QUT’s Widening Participation Equity initiative (HEPPP funded) the vans which averaged 120 school visits each year has increased to 150+ visits in 2010. Additionally 100+ workshops (hands-on and career focused) have been presented to students from low socio-economic status schools, on the three QUT campuses in 2011. While this is designed as a long-term initiative the short term results have been very promising, with 3000 students attending the workshops in the first six months and teacher and students feedback has been overwhelmingly positive.
Resumo:
Classroom emotional climates are interrelated with students’ engagement with university courses. Despite growing interest in emotions and emotional climate research, little is known about the ways in which social interactions and different subject matter mediate emotional climates in preservice science teacher education classes. In this study we investigated the emotional climate and associated classroom interactions in a preservice science teacher education class. We were interested in the ways in which salient classroom interactions were related to the emotional climate during lessons centered on debates about science-based issues (e.g., nuclear energy alternatives). Participants used audience response technology to indicate their perceptions of the emotional climate. Analysis of conversation for salient video clips and analysis of non-verbal conduct (acoustic parameters, body movements, and facial expressions) supplemented emotional climate data. One key contribution that this study makes to preservice science teacher education is to identify the micro-processes of successful and unsuccessful class interactions that were associated with positive and neutral emotional climate. The structure of these interactions can inform the practice of other science educators who wish to produce positive emotional climates in their classes. The study also extends and explicates the construct of intensity of emotional climate.
Resumo:
Governments have recognised that the technological trades rely on knowledge embedded traditionally in science, technology, engineering and mathematics (STEM) disciplines. However, there is substantial evidence that students are turning away from these subjects in schools because the school curriculum is seen as irrelevant, with clear implications for not just vocational education but also higher education. In this paper, we report preliminary findings on the development of two curricula that attempt to integrate science and mathematics with workplace knowledge and practices. We argue that these curricula provide educational opportunities for students to pursue their preferred career pathways. These curricula were co-developed by industry and educational personnel across three industry sectors, namely, mining industry, aerospace and wine tourism. The aim was to provide knowledge appropriate for students moving from school to the workplace as trade apprentices in the respective industries. The analysis of curriculum and associated policy documents reveals that the curricula adopt applied learning orientations through teaching strategies and assessment practices which focus on practical skills. However, although key theoretical science and maths concepts have been well incorporated, the extent to which knowledge deriving from workplace practices is included varies across the curricula. The extent to which applications of concepts are included in the models depends on a number of factors not least the relevant expertise of the teacher as a practitioner in the industry. Our findings highlight the importance of teachers having substantial practical industry experience and the role that whole school policies play in attempts to align the range of learning experiences with the needs of industry.
Resumo:
Governments have recognised that the technological trades rely on knowledge embedded traditionally in science, technology, engineering and mathematics (STEM) disciplines. In this paper, we report preliminary findings on the development of two curricula that attempt to integrate science and mathematics with workplace knowledge and practices. We argue that these curricula provide educational opportunities for students to pursue their preferred career pathways. These curricula were co-developed by industry and educational personnel across two industry sectors, namely, mining and aerospace. The aim was to provide knowledge appropriate for students moving from school to the workplace in the respective industries. The analysis of curriculum and associated policy documents reveals that the curricula adopt applied learning orientations through teaching strategies and assessment practices which focus on practical skills. However, although key theoretical science and maths concepts have been well incorporated, the extent to which knowledge deriving from workplace practices is included varies across the curricula. Our findings highlight the importance of teachers having substantial practical industry experience and the role that whole school policies play in attempts to align the range of learning experiences with the needs of industry.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.
Resumo:
This study explored pre-service secondary science teachers’ perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher’s diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students’ presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.
Resumo:
The SiMERR National Survey was one of the first priorities of the National Centre of Science, Information and Communication Technology and Mathematics Education for Rural and Regional Australia (SiMERR Australia), established at the University of New England in July 2004 through a federal government grant. With university based ‘hubs’ in each state and territory, SiMERR Australia aims to support rural and regional teachers, students and communities in improving educational outcomes in these subject areas. The purpose of the survey was to identify the key issues affecting these outcomes. The National Survey makes six substantial contributions to our understanding of issues in rural education. First, it focuses specifically on school science, ICT and mathematics education, rather than on education more generally. Second, it compares the different circumstances and needs of teachers across a nationally agreed geographical framework, and quantifies these differences. Third, it compares the circumstances and needs of teachers in schools with different proportions of Indigenous students. Fourth, it provides greater detail than previous studies on the specific needs of schools and teachers in these subject areas. Fifth, the analyses of teacher ‘needs’ have been controlled for the socio-economic background of school locations, resulting in findings that are more tightly associated with geographic location than with economic circumstances. Finally, most previous reports on rural education in Australia were based upon focus interviews, public submissions or secondary analyses of available data. In contrast, the National Survey has generated a sizable body of original quantitative and qualitative data.
Resumo:
Explore the free OPAL resources including surveys from air quality, water quality, tree health, biodiversity of hedgerows, soil and earthwork survey and bug count survey
Resumo:
Scitable is an open online teaching/learning portal combining high quality educational articles authored by editors at NPG with technology-based community features to fuel a global exchange of scientific insights, teaching practices, and study resources. Scitable currently contains articles in the field of genetics, and is intended for college undergraduate faculty and students. Future plans involve extension of Scitable to other fields within the life sciences, as well as to other audiences. Scitable brings together a library of scientific overviews with a worldwide community of scientists, researchers, teachers and students. Nature Education is a new division of Nature Publishing Group devoted to facilitating high quality, innovative, accessible science education in all countries of the world.
Resumo:
Internationally in secondary schools, lessons are typically taught by subject specialists, raising the question of how to accommodate teaching which bridges the sciences and humanities. This is the first study to look at how students make sense of the teaching they receive in two subjects (science and religious education) when one subject’s curriculum explicitly refers to cross-disciplinary study and the other does not. Interviews with 61 students in seven schools in England suggested that students perceive a permeable boundary between science and their learning in science lessons and also a permeable boundary between religion and their learning in RE lessons, yet perceive a firm boundary between science lessons and RE lessons. We concluded that it is unreasonable to expect students to transfer instruction about cross-disciplinary perspectives across such impermeable subject boundaries. Finally we consider the implications of these findings for the successful management of cross-disciplinary education.