918 resultados para Air electric potential gradient
Resumo:
The carousel wind tunnel (CWT) can be a significant tool for the determination of the nature and magnitude of interparticlar forces at threshold of motion. By altering particle and drum surface electrical properties and/or by applying electric potential difference across the inner and outer drums, it should be possible to separate electrostatic effects from other forces of cohesion. Besides particle trajectory and bedform analyses, suggestions for research include particle aggregation in zero and sub-gravity environments, effect of suspension-saltation ratio on soil abrasion, and the effects of shear and shear free turbulence on particle aggregation as applied to evolution of solar nebula.
Resumo:
Skeletal muscle is an attractive target tissue for delivery of therapeutic genes, since it is well vascularized, easily accessible, and has a high capacity for protein synthesis. For efficient transfection in skeletal muscle, several protocols have been described, including delivery of low voltage electric pulses and a combination of high and low voltage electric pulses. The aim of this study was to determine the influence of different parameters of electrotransfection on short-term and long-term transfection efficiency in murine skeletal muscle, and to evaluate histological changes in the treated tissue. Different parameters of electric pulses, different time lags between plasmid DNA injection and application of electric pulses, and different doses of plasmid DNA were tested for electrotransfection of tibialis cranialis muscle of C57BI/6 mice using DNA plasmid encoding green fluorescent protein (GFP). Transfection efficiency was assessed on frozen tissue sections one week after electrotransfection using a fluorescence microscope and also noninvasively, followed by an in vivo imaging system using a fluorescence stereo microscope over a period of several months. Histological changes in muscle were evaluated immediately or several months after electrotransfection by determining infiltration of inflammatory mononuclear cells and presence of necrotic muscle fibers. The most efficient electrotransfection into skeletal muscle of C57BI/6 mice in our experiments was achieved when one high voltage (HV) and four low voltage (LV) electric pulses were applied 5 seconds after the injection of 30 μg of plasmid DNA. This protocol resulted in the highest short-term as well as long-term transfection. The fluorescence intensity of the transfected area declined after 2-3 weeks, but GFP fluorescence was still detectable 18 months after electrotransfection. Extensive inflammatory mononuclear cell infiltration was observed immediately after the electrotransfection procedure using the described parameters, but no necrosis or late tissue damage was observed. This study showed that electric pulse parameters, time lag between the injection of DNA and application of electric pulses, and dose of plasmid DNA affected the duration of transgene expression in murine skeletal muscle. Therefore, transgene expression in muscle can be controlled by appropriate selection of electrotransfection protocol.
Resumo:
The Zeeman effect of chlorine nuclear quadrupole resonance in polycrystalline samples of 2,6-, 2,5 and 3,5-dichlorophenol has been investigated at room temperature in order to study the effect of hydrogen bonding on the electric field gradient asymmetry parameter n. While the two n.q.r. lines in 3,5-dichlorophenol gave an asymmetry parameter of 10%, those in 2,6- and 2,5-dichlorophenol gave different values of n for the two chlorines. The chlorine atom which is ortho to the OH group and involved in hydrogen bonding (i.e., corresponding to the low frequency line) gave an asymmetry parameter of 0.21 in 2,6-dichlorophenol and 0.17 in 2,5-dichlorophenol while the other chlorine (i.e., corresponding to the high frequency line) gave a lower value of 0.12 in 2,6-dichlorophenol and 0.11 in 2,5-dichlorophenol. These values of n are discussed in terms of hydrogen bonding and bond parameters.
Resumo:
Li n.m.r, in single crystals of lithium acetate dihydrate is used to determine the quadrupole coupling parameters: (e2qQ/h) and r/. The orientations of the principal z, y and x components of the electric field gradient tensor are determined to be along the crystallographic b, a and c axes respectively. The parameters experimentally determined are (e2qQ/h)= 154"6 kHz; and i/= 0.9. This study indicates a tetrahedral configuration around the Li ion, confirming the recent X-ray and p.m.r, results.
Resumo:
Superhydrophobic and superhydrophilic surfaces have been extensively investigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable superhydrophobic surfaces provides a promising solution for their long-term service under UV or strong solar light irradiations.
Resumo:
We have made concurrent measurements of ionic current and optical transmission between crossed polarisers on several nematics with positive dielectric anisotropy under the action of applied low frequency (< 1KHz) square wave voltages. When the field E is low, the measured current is linear in E and there is no electrooptic response. Beyond some value of the field (E(0)similar to 100 esu), the current becomes independent of the field (phenomenon of limiting current). Further an electrooptic signal is measured at twice the frequency of the applied voltage, which exhibits a peak as a function of the field. The width of the peak is 3 to 4 times the value of E-0, and the signal level at the peak decreases as the frequency is increased. These measurements have been made on three highly polar compounds with cyano end groups. Careful observations do not show any evidence of electrohydrodynamic instabilities in the sample. It is argued that the observations can be understood if at the onset of the phenomenon of the limiting current, a strong electric field gradient is established near one of the electrodes due to the sweeping of an ionic species with high mobility. The field gradient produces a flexoelectric deformation of the director field, which in turn gives rise to the electrooptic effect. At higher fields, the stabilising dielectric torque takes over to suppress this instability.
Resumo:
An expression for the EMF of a nonisothermal galvanic cell, with gradients in both temperature and chemical potential across a solid electrolyte, is derived based on the phenomenological equations of irreversible thermodynamics. The EMF of the nonisothermal cell can be written as a sum of the contributions from the chemical potential gradient and the EMF of a thermocell operating in the same temperature gradient but at unit activity of the neutral form of the migrating species. The validity of the derived equation is confirmed experimentally by imposing nonlinear gradients of temperature and chemical potential across galvanic cells constructed using fully stabilized zirconia as the electrolyte. The nature of the gradient has no effect on the EMF.
Resumo:
The a.c. conductivity of CaF2 samples containing a fine dispersion of CaO particles has been measured in the temperature range 630 to 1100 K. The conductivity of the dispersed solid electrolyte is two orders of magnitude higher than that for pure polycrystalline CaF2 in the middle of the temperature range. Transport measurements on pure single crystals of CaF2 and polycrystalline samples, with and without CaO dispersion, using Fe+FeO and pure Fe as electrodes, clearly indicate that fluorine ions are the only migrating ionic species with a transport number of almost unity, contrary to the suggestion of Chou and Rapp [1, 2]. The enhanced conductivity of the dispersed solid electrolyte probably arises from two effects. A small solubility of oxygen in CaF2 results in an increase in the fluorine vacancy concentration and conductivity. Adsorption of fluorine ions on the surface of the dispersed particles of CaO results in a space charge region around each particle with enhanced conductivity. Measurements on a galvanic cell incorporating CaF2 as the solid electrolyte and oxide electrodes show that the e.m.f. is a function of the activity of CaO at the electrode/electrolyte interface. The response to an oxygen potential gradient is, therefore, through an exchange reaction, which establishes an equivalent fluorine potential at the electrode/electrolyte interface.
Resumo:
Measurements on the solid electrolyte cell(Ar -b H2 ~ H2S/CaS + CaF2 ~- ( P t ) / / C a F 2 / / ( P t )-~- CaF2 ~ CaS/H2S ~- H2 ~- At) show that the emf of the cell is directly related through the Nernst equation to the difference in sulfur potentials established at the two Ar ~- H2 ~ H2S/electrode interfaces. The electrodes are designed to convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient with the aid of the reaction, CaF2(s) ~ 1~ S2(g)-e CaS(s) ~- F2(g). The response time of the probe varies from approximately 9 hr at 990~ to 2.5 hr at 1225~ The conversion of calcium sulfide and/or calcium fluoride into calcium oxide should not be a problem in anticipated commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.
Resumo:
Mixed ionic and electronic conduction in Zr02-based solid electrolytes was studied.The effect of impurities and second-phase particles on the mixed conduction parameter, P,, was measured for different types of ZrOZ electrolytes. The performance of solid-state sensors incorporating ZrOZ electrolytes is sometimes limited by electronic conduction in ZrOZ, especially at temperatures >I800 K. Methods for eliminating or minimizing errors in measured emf due to electronically driven transport of oxygen anions are discussed. Examples include probes for monitoring oxygen content in liquid steel as well as the newly developed sulfur sensor based on a ZrOz(Ca0) + CaS electrolyte. The use of mixed conducting ZrOZ as a semipermeable membrane or chemically selective sieve for oxygen at high temperatures is discussed. Oxygen transport from liquid iron to CO + C& gas mixtures through a ZrOZ membrane driven by a chemical potential gradient, in the absence of electrical leads or imposed potentials, was experimentally observed.
Resumo:
Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in an infinite piezoelectric or on the interface of piezoelectric bimaterials. For homogeneous materials it is found that the normal electric displacement D-2, induced by the crack, is constant along the crack faces which depends only on the remote applied stress fields. Within the crack slit, the perturbed electric fields induced by the crack are also constant and not affected by the applied electric displacement fields. For bimaterials, generally speaking, an interface crack exhibits oscillatory behavior and the normal electric displacement D-2 is a complex function along the crack faces. However, for bimaterials, having certain symmetry, in which an interface crack displays no oscillatory behavior, it is observed that the normal electric displacement D-2 is also constant along the crack faces and the electric field E-2 has the singularity ahead of the crack tip and has a jump across the interface. Energy release rates are established for homogeneous materials and bimaterials having certain symmetry. Both the crack front parallel to the poling axis and perpendicular to the poling axis are discussed. It is revealed that the energy release rates are always positive for stable materials and the applied electric displacements have no contribution to the energy release rates.
Resumo:
This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in piezoelectrics or on the interfaces of piezoelectric bimaterials. A class of boundary problems involving many cracks is also solved. For homogeneous materials it is found that the normal electric displacement D-2 induced by the crack is constant along the crack faces which depends only on the applied remote stress field. Within the crack slit, the electric fields induced by the crack are also constant and not affected by the applied electric field. For the bimaterials with real H, the normal electric displacement D-2 is constant along the crack faces and electric field E-2 has the singularity ahead of the crack tip and a jump across the interface.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.