565 resultados para Aerodynamics, Transonic
Resumo:
Three-dimensional bumps have been developed and investigated, aiming at the two major objectives of shock-wave / boundary-layer interaction control, i.e. drag reduction and suppression of separation, simultaneously. An experimental investigation has been conducted for a default rounded bump in channel now at University of Cambridge and a computational study has been performed for a spanwise series of rounded bumps mounted on a transonic aerofoil at University of Stuttgart. Observed in both cases are wave drag reduction owing to A-shock structures produced by three-dimensional surface bumps and mild control effects on the boundary layer. The effects of rough surface and tall extension have been investigated as well as several geometric variations and multiple bump configurations. A double configuration of narrow rounded bumps has been found to best perform amongst the tested, considerably reducing wave drag through a well-established A-shock structure with little viscous penalty and thus achieving substantial overall drag reduction. Counter-rotating streamwise vortex pairs have been produced by some configurations as a result of local flow separation, but they have been observed to be confined in relatively narrow wake regions, expected to be beneficial in suppressing large-scale separation under off-design condition despite increase of viscous drag. On the whole a large potential of three-dimensional control with discrete rounded bumps has been demonstrated both experimentally and numerically, and experimental investigation of bumps fitted on a transonic aerofoil or wing is suggested toward practical application.
Resumo:
Within the low Reynolds number regime at which birds and small air vehicles operate (Re=15,000-500,000), flow is beset with laminar separation bubbles and bubble burst which can lead to loss of lift and early onset of stall. Recent video footage of an eagle's wings in flight reveals an inconspicuous wing feature: the sudden deployment of a row of feathers from the lower surface of the wing to create a leading edge flap. An understanding of the aerodynamic function of this flap has been developed through a series of low speed wind tunnel tests performed on an Eppler E423 aerofoil. Experiments took place at Reynolds numbers ranging from 40000 to 140000 and angles of attack up to 30°. In the lower range of tested Reynolds numbers, application of the flap was found to substantially enhance aerofoil performance by augmenting the lift and limiting the drag at certain incidences. The leading edge flap was determined to act as a transition device at low Reynolds numbers, preventing the formation of separation bubbles and consequently decreasing the speed at which stall occurs during landing and manoeuvring.
Resumo:
A novel supersonic wind tunnel setup is proposed to enable the investigation of control on a normal shock wave. Previous experimental arrangements were found to suffer from shock instability. Wind tunnel tests with and without control have confirmed the capability of the new setup to stabilise a shock structure at a target position without changing the nature of the shock wave / boundary layer interaction flow at M∞ = 1.3 and M ∞ = 1.5. Flow visualisation and pressure measurements with the new setup have revealed detailed characteristics of shock wave / boundary layer interactions and a λ-shock structure as well as benefits of control in total drag reduction in the presence of 3D bump control.
Resumo:
Detached-eddy simulation of transonic flow past a thin section of a fan blade has been carried out. The inflow Mach number is 1.03, and a bow shock forms upstream of the blade. The shock (corresponding to an adjacent blade) impinges on the suction-side boundary layer which causes separation and rapid transition to turbulence. The boundary layer later re-attaches near the trailing edge. The pressure-side boundary layer transitions near the leading edge and remains attached. Mean surface pressure shows basic agreement with a steady RANS calculation; strong shock motion in the DES is the major cause of discrepancy. Surface pressure spectra are investigated, and low-frequency two-dimensional disturbances associated with the shock motion are dominant. Removing the two-dimensional component from the spectra, the pressure-side three-dimensional spectra reproduce the spectral shape given by a correlation for flat-plate boundary layer wall-pressure spectra developed by Goody. 1 The suction-side disturbances produce similar high- and intermediate-frequency scalings despite substantially different boundary layer development. Near-wake results show that disturbance kinetic energy peaks at the suction-side inflection point of the mean profile, and that the energy is concentrated at low frequencies relative to the near-trailing edge surface pressure. Copyright © 2009 by the authors.
Resumo:
An experimental investigation into the response of transonic SBLIs to periodic down-stream pressure perturbations in a parallel walled duct has been conducted. Tests have been carried out with a shock strength of M ∞ = 1.5 for pressure perturbation frequencies in the range 16-90 Hz. Analysis of the steady interaction at M∞ = 1.5 has also been made. The principle measurement techniques were high speed schlieren photography and laser Doppler anemometry. The structure of the steady SBLI was found to be highly three-dimensional, with large corner flows and sidewall SBLIs. These aspects are thought to influence the upstream transmission of pressure information through the interaction by affecting the post-shock flow field, including the extent of regions of secondary supersonic flow. At low frequency, the dynamics of shock motion can be predicted using an inviscid analytical model. At increased frequencies, viscous effects become significant and the shock exhibits unexpected dynamic behaviour, due to a phase lag between the upstream transmission of pressure information in the core flow and in the viscous boundary layers. Flow control in the form of micro-vane vortex generators was found to have a small impact on shock dynamics, due to the effect it had on the post-shock flow field outside the viscous boundary layer region. The relationship between inviscid and viscous effects is developed and potential destabilising mechanisms for SBLIs in practical applications are suggested. Copyright © 2009 by Paul Bruce and Holger Babinsky.
Resumo:
A combined experimental and numerical study of a transonic shock wave in a parallel walled duct subject to downstream pressure perturbations has been conducted. Experiments and simulations have been carried out with a shock strength of M∞ = 1.4 for pressure perturbation frequencies in the range 16-90 Hz. The dynamics of unsteady shock motion and the interaction structure between the unsteady transonic shock wave and the turbulent tunnel floor boundary layer have been investigated. It is found that the (experimentally measured) dynamics of shock motion are generally well predicted by the computational scheme, especially at relatively low (≈ 40 Hz) frequencies. However, at higher frequencies (≈ 90 Hz), some subtle differences between the shock dynamics measured in experiments and those predicted by Computational Fluid Dynamics (CFD) exist. There is evidence from experiments that variations in shock / boundary layer interaction (SBLI) structure caused by shock motion are responsible for a change in the nature of shock dynamics between low and high frequency. In contrast, numerical results at low and high frequencies do not differ significantly and this suggests that the numerical method is not fully capturing the physics of the unsteady flow. Possible reasons for this are considered and a number of areas where CFD is unable to replicate experimental observations are identified. Significantly, CFD predicts changes in SBLI structure due to shock motion that are much too large and this may explain why none of the subtle effects on shock dynamics seen in experiments occur in CFD. Further work developing numerical methods that demonstrate a more realistic sensitivity of SBLI structure to unsteady shock motion is required. Copyright © 2010 by P.J.K. Bruce.
Resumo:
Experiments were conducted investigating the interaction between a normal shock wave and a corner boundary layer in a constant area rectangular duct. Active corner suction and passive blowing were applied to manipulate the natural corner flows developing in the working section of the Cambridge University supersonic wind tunnel. In addition robust vane micro-vortex generators were applied to the corners of the working section. Experiments were conducted at Mach numbers of M∞=1.4 and 1.5. Flow visualisation was carried out through schlieren and surface oil flow, while static pressures were recorded via floor tappings. The results indicate that an interplay occurs between the corner flow and the centre line flow. It is believed that corner flow separation acts to induce a shock bifurcation, which in turn leads to a smearing of the adverse pressure gradient elsewhere. In addition the blockage effect from the corners was seen to result in a reacceleration of the subsonic post-shock flow. As a result manipulation of the corner regions allows a separated or attached centre line flow to be observed at the same Mach number. Copyright © 2010 by Babinsky, Burton, Bruce.
Resumo:
Replacing a conventional combustor in a gas turbine with one that produces a pressure gain could significantly raise cycle efficiency. For this efficiency gain to be achieved the exit flow from the combustor must be coupled to the downstream turbine such that the pressure gain produced by the combustor is retained and such that the turbine efficiency is maintained. The exit flow from a pressure gain combustor will often contain a high velocity unsteady jet. It has previously been proposed that ejectors should be used to harness the energy in the unsteady jet, this paper proposes combining an ejector with the first stage vane, producing a single compact component that preserves the combustion driven pressure gain and delivers a suitable flow to the turbine so that its efficiency is not compromised. This novel component has been experimentally tested for the first time. The performance of this first prototype design is found to be low due to high levels of loss generated by secondary flows. However possible mitigation strategies are discussed. It is shown that the unsteadiness at exit form the ejector-vane is reduced compared to the inlet flow. If a pulse combustor were incorporated into a gas turbine, it is unlikely that the level of unsteadiness experienced in a downstream rotor will be significantly larger that that due to the periodic passing of upstream wakes. Copyright © 2010 by Jonathan Heffer.
Resumo:
An experimental and numerical investigation into transonic shock/boundary-layer interactions in rectangular ducts has been performed. Experiments have shown that flow development in the corners of transonic shock/boundary-layer interactions in confined channels can have a significant impact on the entire flowfield. As shock strength is increased from M∞ = 1:3 to 1.5, the flowfield becomes very slightly asymmetrical. The interaction of corner flows with one another is thought to be a potential cause of this asymmetry. Thus, factors that govern the size of corner interactions (such as interaction strength) and their proximity to one another (such as tunnel aspect ratio) can affect flow symmetry. The results of the computational study show reasonable agreement with experiments, although simulations with particular turbulence models predict highly asymmetrical solutions for flows that were predominantly symmetrical in experiments. These discrepancies are attributed to the tendency of numerical schemes to overprediction corner-interaction size, and this also accounts for why computational fluid dynamics predicts the onset of asymmetry at lower shock strengths than in experiments. The findings of this study highlight the importance of making informed decisions about imposing artificial constraints on symmetry and boundary conditions for internal transonic flows. Future effort into modeling corner flows accurately is required. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.