121 resultados para Aeroacoustics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embedded propulsion systems, such as for example used in advanced hybrid-wing body aircraft, can potentially offer major fuel burn and noise reduction benefits but introduce challenges in the aerodynamic and acoustic integration of the high-bypass ratio fan system. A novel approach is proposed to quantify the effects of non-uniform flow on the generation and propagation of multiple pure tone noise (MPTs). The new method is validated on a conventional inlet geometry first. The ultimate goal is to conduct a parametric study of S-duct inlets in order to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the mechanism underlying the distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the MPT noise generation mechanisms while greatly reducing computational cost. A single, 3-D full-wheel unsteady CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted mean flow. Several numerical tools were developed to enable the implementation of this new approach. Parametric studies were conducted to determine appropriate grid and time step sizes for the propagation of acoustic waves. The Ffowcs-Williams and Hawkings integral method is used to propagate the noise to far field receivers. Non-reflecting boundary conditions are implemented through the use of acoustic buffer zones. The body force modeling approach is validated and proof-of-concept studies demonstrate the generation of disturbances at both blade-passing and shaft-order frequencies using the perturbed body force method. The full methodology is currently being validated using NASA's Source Diagnostic Test (SDT) fan and inlet geometry. Copyright © 2009 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of a turbulent eddy with a semi-infinite, poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of scattered aerodynamic noise. The scattering problem is solved using the Wiener-Hopf technique for constant plate properties to identify their scaling dependence on the resulting aerodynamic noise, including the dependence on flight velocity, where special attention is paid to the limiting cases of rigid, porous and elastic, impermeable plate conditions. Results from these analyses attempt to address how trailing edge noise may be mitigated by porosity and seek to deepen the understanding of how owls hunt in acoustic stealth. © 2012 by Justin W. Jaworski and Nigel Peake. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims at accounting for swirling mean flow effects on rotor trailing-edge noise. Indeed, the mean flow in between the rotor and the stator of the fan or of a compressor stage is highly swirling. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces and of Goldstein's acoustic analogy in a circular duct with uniform mean flow to a swirling mean flow in an annular duct is introduced. It is first applied to tonal noise. In most cases, the swirl modifies the pressure distribution downstream of the fan. In several configurations, when the swirl is rather close to a solid body swirl, it is often sufficient to apply a simple Doppler effect correction when predicting the duct modes in uniform mean flow in order to predict accurately the noise radiated with swirl. However, in other realistic configurations, the swirling mean-flow effect cannot be addressed using this simple Doppler effect correction. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling and sheared mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has an effect. In some cases the a simple Doppler effect may address it, but, in other realistic configurations our acoustic analogy with swirl is needed. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims at investigating the effect of a swirling mean flow and a lined annular duct on rotor trailing-edge noise. The objectives are to investigate these effects on the eigenvalues and a tailored Green's function on one hand and on the realistic case of the fan trailing-edge noise on the other hand. Indeed, the mean flow in between the rotor and the stator of the fan is highly swirling. Moreover, interstage liners are used to reduce the noise produced by the fan stage. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces, of Goldstein's acoustic analogy in a hardwall circular duct with uniform mean flow and of Rienstra & Tester's Green's function in an annular lined duct with uniform mean flow to a swirling mean flow in an annular duct with liner is introduced. First, the eigenvalues and the Green's function are investigated showing a strong effect of the swirl and of the liner. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct with lined walls and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has a strong effect on the absolute noise level. The overall liner insertion loss is little changed by the swirl in the studied cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of a turbulent eddy with a semi-infinite, poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of aerodynamic noise generation. The edge is modelled as a thin plate poroelastic plate, which is known to admit fifth-, sixth-, and seventh-power noise dependences on a characteristic velocity U of the turbulent eddy. The associated acoustic scattering problem is solved using the Wiener-Hopf technique for the case of constant plate properties. For the special cases of porous-rigid and impermeable-elastic plate conditions, asymptotic analysis of the Wiener- Hopf kernel function furnishes the parameter groups and their ranges where U5, U6, and U7 behaviours are expected to occur. Results from this analysis attempt to help guide the search for passive edge treatments to reduce trailing-edge noise that are inspired by the wing features of silently flying owls. Furthermore, the appropriateness of the present model to the owl noise problem is discussed with respect to the acoustic frequencies of interest, wing chord-lengths, and foraging behaviour across a representative set of owl species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optimization process has been used to design an ultra-low count fan outlet guide vane with an unconventional leading edge profile to reduce the interaction noise. Computational fluid dynamics has been used to predict the aerodynamic and acoustic performance of the stator vane. The final stator design has been built and tested in a representative fan stage rig to determine its tone noise characteristics. The stator vane is found to give significant tone noise reduction at the fundamental blade passing frequency at cut-back in line with design expectations. Detailed comparisons of predicted circumferential and radial modes levels against measured mode detection data are also presented. A good agreement was found between numerical predictions and experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study develops a single-stream jet noise prediction model for a family of chevron nozzles. An original equation is proposed for the fourth-order space-time cross-correlations. They are expressed in flow parameters such as streamwise circulation and turbulent kinetic energy. The cross-correlations based on a Reynolds Averaged Navier-Stokes (RANS) flowfield showed a good agreement with those based on a Large Eddy Simulation (LES) flowfield. This proves that the proposed equation describes the cross-correlations accurately. With this novel source description, there is an excellent agreement between our model's far-field noise predictions and measurements1 for a wide range of frequencies and radiation angles. Our model captures the spectral shape, amplitude and peak frequency very well. This establishes that our model holds good for a family of chevron nozzles. As our model provides quick and accurate predictions, a parametric study was performed to understand the effects of a chevron nozzle geometry on jet noise and thrust loss. Chevron penetration is the underpinning factor for jet noise reduction. The reduction of jet noise per unit thrust loss decreases linearly with chevron penetration. The number of chevrons also has a considerable effect on jet noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling the noise originating from a landing gear has proven to be a challenging task, because of its complicated structure. In full-scale, landing gear noise can only be investigated experimentally by source localization techniques and fly-over measurements with microphone arrays. In the present work, measurements of a Boeing B747-400 were used to determine the contribution of the landing gear to the overall noise emitted during a fly-over and how the broadband noise from the landing gear scales with the flight velocity. A tonal source from the nose landing gear was identified at 380 Hz with a harmonic at 760 Hz and it most likely originates from a cavity. It was also found that the Power Spectral Density (PSD) of the high frequency broadband component varies linearly with frequency and there is some scaling with the ow velocity. Finally, the nose landing gear was shown to be a significant contributor to the overall airframe noise as expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the experimental study of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed in the rough plates than the smooth plate, and the rough plates also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles over the rigid plate and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit encouraging similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. The simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2007 by Yu Liu and Ann P. Dowling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbomachinery noise radiating into the rearward arc is an important problem. This noise is scattered by the trailing edges of the nacelle and the jet exhaust, and interacts with the shear layers between the external flow, bypass stream and jet, en route to the far field. In the past a range of relevant model problems involving semi-infinite cylinders have been solved. However, one limitation of previous solutions is that they do not allow for the jet nozzle to protrude a finite distance beyond the end of the nacelle (or in certain configurations being buried a finite distance upstream). In this paper we use the matrix Wiener-Hopf technique, which will allow precisely the finite nacelle-jet nozzle separation to be included. The crucial step in our work is to factorise a certain matrix as a product of terms analytic and invertible in the upper/lower halves of the complex plane. The way we do this matrix factorisation is quite different in the buried and protruding nozzle cases. In the buried case our solution method is the so-called pole-removal technique. In the technically more demanding protruding case, however, we must first use Pade approximants to generate a uniformly-valid, meromorphic representation of a certain function, before the same pole-removal method can be applied. Sample results are presented, investigating in particular the effects of exit plane stagger. © 2007 by B Veitch and N Peake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The propagation of unsteady disturbances in a slowlyvarying cylindrical duct carrying mean swirling flow is investigated using a multiple-scales technique. This is applicable to turbomachinery flow behind a rotor stage when the swirl and axial velocities are of the same order. The presence of mean vorticity couples acoustic and vorticity equations which produces an eigenvalue problem that is not self-adjoint unlike that for irrotational mean flow. In order to determine the amplitude variation along the duct, an adjoint solution for the coupled system of equations is derived. The solution breaks down where a mode changes from cut on to cut off. In this region the amplitude is governed by a form of Airy's equation, and the effect of swirl is to introduce a small shift in the origin of the Airy function away from the turning-point location. The variation of axial wavenumber and amplitude along the duct is calculated. In hard-walled ducts mean swirl is shown to produce much larger amplitude variation along the duct compared with a nonswirling flow. Mean swirl also has a large effect in ducts with finite-impedance walls which differs depending on whether modes are co-rotating with the swirl or counter rotating. © 2001 by A.J. Cooper, Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helmholtz resonators are commonly used as absorbers of incident acoustic power. Theoretical and experimental investigations have been performed in the four cases of no mean flow, grazing mean flow, bias mean flow and a combination of grazing and bias mean flows. In the absence of a mean flow, the absorption coefficient (deflned as the proportion of incident energy absorbed) is a non-linear function of the acoustic pressure and high incident acoustic pressures are required before the absorption becomes signiflcant. In contrast, when there is a mean flow present, either grazing or bias, the absorption is linear and thus absorption coefficient is independent of the magnitude of the acoustic pressure, and absorption is obtained over a wider range of frequencies. Non-linear effects are only discernible very close to resonance and at very-high amplitude. With grazing mean flow, there is the undesirable effect that sound can be generated over a range of frequencies due to the interaction between the unsteadily shed vorticity waves and the downstream edge of the aperture. This production is not observed when there is a bias flow because here the vorticity is shed all around the rim of the aperture and swept away by the mean flow. When there is both a grazing mean flow and a mean bias flow, we flnd that only a small amount of bias mean flow, compared with grazing mean flow, is required to destroy the production of acoustic energy. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds-averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non-diffusive, time- and space-staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.