994 resultados para Aeolian Sand Transport
Resumo:
At Site 582, DSDP Leg 87, turbidites about 560 m thick were recovered from the floor of the Nankai Trough. A turbidite bed is typically composed of three subdivisions: a lower graded sand unit, an upper massive silt unit, and an uppermost Chondrites burrowed silt unit. The turbidites intercalate with bluish gray hemipelagic mud which apparently accumulated below the calcite compensation depth. In order to investigate the nature and provenance of the turbidites, we studied the grain orientation, based on magnetic fabric measurements and thin-section grain counting, and grain size, using a photo-extinction settling tube and detrital modal analysis. The following results were obtained: (1) grain orientation analysis indicates that the turbidity current transport parallels the trench axis, predominantly from the northeast; (2) Nankai Trough turbidites generally decrease in grain size to the southwest; (3) turbidite sands include skeletal remains indicative of fresh-water and shallow-marine environments; and (4) turbidites contain abundant volcanic components, and their composition is analogous to the sediments of the Fuji River-Suruga Bay area. Considering other evidence, such as physiography and geometry of trench fill, we conclude that the turbidites of Site 582 as well as Site 583 were derived predominantly from the mouth of Fuji River and were transported through the Suruga Trough to the Nankai Trough, a distance of some 700 km. This turbidite transport system has tectonic implications: (1) the filling of the Nankai Trough is the direct consequence of the Izu collision in Pliocene- Pleistocene times; (2) the accretion of trench fill at the trench inner slope observed in the Nankai Trough is controlled by collision tectonics; and (3) each event of turbidite deposition may be related to a Tokai mega-earthquake.
Resumo:
We present grain-size distributions of the terrigenous fraction of two sediment cores from the southeast Levantine Sea (SL112) and the northern Aegean Sea (SL148), spanning the time interval from the late glacial to the present. End-member modelling of the grain-size distribution allows discriminating between aeolian and fluvial transport of the sediments and helps to infer palaeoenvironmental conditions in the source areas. Sedimentary and depositional processes during the late glacial and Holocene were controlled by climatic variations of both the northern high latitudes and the African climate system. The sedimentation at site SL112 off Israel is dominated by the suspension load of the River Nile and aeolian dust from the Sahara. Variations in grain size reflect the early to mid- Holocene climate transition from the African Humid Period to recent arid conditions. This climate change was gradual, in contrast to the abrupt humidity change documented inWestern Saharan records. This implies a successive decrease in Nile river sediment supply due to a step-wise aridification of the headwaters. The grain-size data of SL112 show a humidity maximum at 5 kyr BP coincident with a regionally-restricted wet phase in the Levantine Sea. The sediments at the North Aegean site SL148 consist of riverine particles and low amounts of aeolian dust, probably derived from South European sources and with probably minor Saharan influence. The sedimentation processes are controlled by climate conditions being characterized by enhanced deposition of dust during the cold and dry glacial period and by decreased aeolian influx during the temperate and humid Holocene.
Resumo:
Based on a high-resolution sediment record from a submarine meandering canyon system offshore the present-day hyperarid Saharan Africa, two phases of turbidity-current activity can be distinguished during the past 13,000 years. Frequent, siliciclastic turbidity currents can be related to deglacial sea-level history, whereas rhythmically recurring fine-grained and carbonate-rich turbidity currents with recurrence times of roughly 900 years are inferred for the Holocene. Various trigger mechanisms can be considered to initiate turbidity currents, but only a few can explain a periodic turbidite activity. A comparison of Holocene turbidite recurrence times and basic cycles of 900 and 1,800 years found in various Holocene paleoclimate studies suggests that a previously unrecognized climate-related coupling may be active.
Resumo:
Sequences of late Pliocene to Holocene sediment lap onto juvenile igneous crust within 20 km of the Juan de Fuca Ridge in northwestern Cascadia Basin, Pacific Ocean. The detrital modes of turbidite sands do not vary significantly within or among sites drilled during Leg 168 of the Ocean Drilling Program. Average values of total quartz, total feldspar, and unstable lithic fragments are Q = 35, F = 35, and L = 30. Average values of monocrystalline quartz, plagioclase, and K-feldspar are Qm = 46, P = 49, and K = 5, and the average detrital modes of polycrystalline quartz, volcanic-rock fragments, and sedimentary-rock plus metamorphic-rock fragments are Qp = 16, Lv = 43, and Lsm = 41. Likely source areas include the Olympic Peninsula and Vancouver Island; sediment transport was focused primarily through the Strait of Juan de Fuca, Juan de Fuca Channel, Vancouver Valley, and Nitinat Valley. Relative abundance of clay minerals (<2-µm-size fraction) fluctuate erratically with depth, stratigraphic age, and sediment type (mud vs. turbidite matrix). Mineral abundance in mud samples are 0%-35% smectite (mean = 8%), 18%-59% illite (mean = 40%), and 29%-78% chlorite + kaolinite (mean = 52%). We attribute the relatively low content of smectite to rapid mechanical weathering of polymictic source terrains, with little or no input of volcanic detritus from the Columbia River. The scatter in clay mineralogy probably was caused by converging of surface currents, turbidity currents, and near-bottom nepheloid clouds from several directions, as well as subtle changes in glacial vs. interglacial weathering products.
Resumo:
A comprehensive engineering analysis of the coastal sediment transport processes along a 42-kilometer segment of the North Carolina shoreline from Wrightsville Beach to Fort Fisher is presented. Included in the analysis is an interpretation of the littoral processes, longshore transport, and the behavior and success of beach nourishment projects at Wrightsville Beach and Carolina Beach, North Carolina. The historical position of the MLW, MSL, and MHW contours, relative to a fixed base line, is plotted for the period between 1964 and 1975. An equivalent volumetric erosion or accretion between successive surveys is determined by multiplying the average excursion distance of the contours by a constant of proportionality. The plots of excursion distance versus time for the MLW, MSL, and MHW contours also show the time response of the beach fills. This response is described by a mathematical function. The alongshore components of wave-induced energy flux are also determined within the study area through wave refraction analysis. This information, together with the information on volumetric change, is used in a sediment budget analysis to determine the coefficient of alongshore sediment transport and the inlet trapping characteristics. (Author).
Resumo:
"November 1968."
Resumo:
"June 1975."
Resumo:
The development of sand ripples in an oscillatory-flow water tunnel was observed in 104 laboratory experiments approximating conditions at the seabed under steady progressive surface waves. The period, T, and amplitude, a, of the water motion were varied over wide ranges. Three quartz sands were used, with mean grain diameters, D = 0.55, 0.21, and 0.18 millimeter. In 24 experiments, with the bed initially leveled, T was reduced until ripples appeared, and their development to final equilibrium form was observed without further change in T. The remaining 80 experiments investigated the response of previously established bed forms to changes in T or a or both. The ripple length, lambda, and height, eta, were measured from photos, except when bed forms were three dimensional.
Resumo:
As presently used, the immersed weight rate, I sub l, is the volume rate, Q, of longshore transport, multiplied by a constant. For use in engineering problems, I sub l must be converted back to the equivalent Q. The I sub l formulation may be important where the unit weight of sand differs significantly from the unit weight of sand at the open-coast sites contributing data to the design curve. Increase in void ratio may result in a 10- to 20-percent increase in actual (as compared to predicted) shoaling volumes where sand accumulates in protected water. Void ratio should be measured in field studies of longshore transport.
Resumo:
The sedimentation rate of sand grains in the hindered settling regime has been considered to assess particle shape effects. The behaviour of various particulate systems involving sand has been compared with the widely used Richardson-Zaki expression. The general form of the expression is found to hold, in as much as remaining as a suitable means to describe the hindered settling of irregular particles. The sedimentation exponent n in the Richardson-Zaki expression is found to be significantly larger for natural sand grains than for regular particles. The hindered settling effect is therefore greater, leading to lower concentration gradients than expected. The effect becomes more pronounced with increasing particle irregularity. At concentrations around 0.4, the hindered settling velocity of fine and medium natural sands reduces to about 70% of the value predicted using existing empirical expressions for n. Using appropriate expressions for the fluidization velocity and the clear water settling velocity, a simple method is discussed to evaluate the sedimentation exponent and to determine the hindered settling effect for sands of various shapes.
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the heat, momentum and mass transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user-defined function (UDF). The study completes the fast pyrolysis modelling in bubbling fluidised bed reactors.
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase, according to the literature. FLUENT 6.2 has been used as the modelling framework of the simulations with a completely revised drag model, in the form of user defined function (UDF), to calculate the forces exerted on the particle as well as its velocity components. 2-D and 3-D simulations are tested and compared. The study is the first part of a complete pyrolysis model in fluidised bed reactors.
Resumo:
Chromium (Cr) is a metal of particular environmental concern, owing to its toxicity and widespread occurrence in groundwater, soil, and soil solution. A combination of hydrological, geochemical, and microbiological processes governs the subsurface migration of Cr. Little effort has been devoted to examining how these biogeochemical reactions combine with hydrologic processes influence Cr migration. This study has focused on the complex problem of predicting the Cr transport in laboratory column experiments. A 1-D reactive transport model was developed and evaluated against data obtained from laboratory column experiments. ^ A series of dynamic laboratory column experiments were conducted under abiotic and biotic conditions. Cr(III) was injected into columns packed with β-MnO 2-coated sand at different initial concentrations, variable flow rates, and at two different pore water pH (3.0 and 4.0). In biotic anaerobic column experiments Cr(VI) along with lactate was injected into columns packed with quartz sand or β-MnO2-coated sand and bacteria, Shewanella alga Simidu (BrY-MT). A mathematical model was developed which included advection-dispersion equations for the movement of Cr(III), Cr(VI), dissolved oxygen, lactate, and biomass. The model included first-order rate laws governing the adsorption of each Cr species and lactate. The equations for transport and adsorption were coupled with nonlinear equations for rate-limited oxidation-reduction reactions along with dual-monod kinetic equations. Kinetic batch experiments were conducted to determine the reduction of Cr(VI) by BrY-MT in three different substrates. Results of the column experiments with Cr(III)-containing influent solutions demonstrate that β-MnO2 effectively catalyzes the oxidation of Cr(III) to Cr(VI). For a given influent concentration and pore water velocity, oxidation rates are higher, and hence effluent concentrations of Cr(VI) are greater, at pH 4 relative to pH 3. Reduction of Cr(VI) by BrY-MT was rapid (within one hour) in columns packed with quartz sand, whereas Cr(VI) reduction by BrY-MT was delayed (57 hours) in presence of β-MnO 2-coated sand. BrY-MT grown in BHIB (brain heart infusion broth) reduced maximum amount of Cr(VI) to Cr(III) followed by TSB (tryptic soy broth) and M9 (minimum media). The comparisons of data and model results from the column experiments show that the depths associated with Cr(III) oxidation and transport within sediments of shallow aquatic systems can strongly influence trends in surface water quality. The results of this study suggests that carefully performed, laboratory column experiments is a useful tool in determining the biotransformation of redox-sensitive metals even in the presence of strong oxidant, like β-MnO2. ^