992 resultados para Adenosine A(2a) receptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that in vitro adenosine enhances histamine release from activated human lung mast cells obtained by enzymic dispersion of lung parenchyma. However, adenosine alone has no effect on histamine release from these cells. Given the evidence for direct activation of mast cells after endobronchial challenge with adenosine and previous studies indicating that mast cells obtained at bronchoalveolar lavage are a better model for asthma studies than those obtained by enzymic dispersion of lung tissue, the histamine-releasing effect of adenosine was examined on lavage mast cells. Bronchoalveolar lavage fluid was obtained from patients attending hospital for routine bronchoscopy (n = 54). Lavage cells were challenged with adenosine or adenosine receptor agonists (20 min, 37 degrees C) and histamine release determined using an automated fluorometric assay. Endogenous adenosine levels were also measured in lavage fluid (n = 9) via an HPLC method. Adenosine alone caused histamine release from ravage mast cells in 37 of 54 patients with a maximal histamine release of 20.56 +/- 2.52% (range 5.2-61 %). The adenosine receptor agonists (R)-N-6-(2-phenylisopropyl)adenosine, 5'-N-ethylcarboxamido-adenosine and CGS21680 also induced histamine release from lavage mast cells. Preincubation of lavage mast cells with the adenosine receptor antagonist xanthine amine congener caused significant inhibition of the response to adenosine (P = 0.007). There was an inverse correlation between endogenous adenosine levels in the lavage fluid and the maximal response to in vitro adenosine challenge of the lavage cells. The findings of the present study indicate a means by which adenosine challenge of the airways can induce bronchoconstriction and support a role for adenosine in the pathophysiology of asthma. The results also suggest that cells obtained from bronchoalveolar ravage fluid may provide the ideal model for the testing of novel, adenosine receptor, targeted therapies for asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of rhodopsin as a structural prototype for the study of the whole superfamily of G protein-coupled receptors (GPCRs) is reviewed in an historical perspective. Discovered at the end of the nineteenth century, fully sequenced since the early 1980s, and with direct three-dimensional information available since the 1990s, rhodopsin has served as a platform to gather indirect information on the structure of the other superfamily members. Recent breakthroughs have elicited the solution of the structures of additional receptors, namely the beta 1- and beta 2-adrenergic receptors and the A(2A) adenosine receptor, now providing an opportunity to gauge the accuracy of homology modeling and molecular docking techniques and to perfect the computational protocol. Notably, in coordination with the solution of the structure of the A(2A) adenosine receptor, the first "critical assessment of GPCR structural modeling and docking" has been organized, the results of which highlighted that the construction of accurate models, although challenging, is certainly achievable. The docking of the ligands and the scoring of the poses clearly emerged as the most difficult components. A further goal in the field is certainly to derive the structure of receptors in their signaling state, possibly in complex with agonists. These advances, coupled with the introduction of more sophisticated modeling algorithms and the increase in computer power, raise the expectation for a substantial boost of the robustness and accuracy of computer-aided drug discovery techniques in the coming years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.

METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.

RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.

CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disease for which electrophysiological studies (EPS) have shown to be of limited value.OBJECTIVE This study presents a CPVT family in which marked postpacing repolarization abnormalities during EPS were the only consistent phenotypic manifestation of ryanodine receptor (RyR2) mutation carriers.METHODS The study was prompted by the observation of transient marked QT prolongation preceding initiation of ventricular fibrillation during atrial fibrillation in a boy with a family history of sudden cardiac death (SCD). Family members underwent exercise and pharmacologic electrocardiographic testing with epinephrine, adenosine, and flecainide. Noninvasive clinical test results were normal in 10 patients evaluated, except for both epinephrine- and exercise-induced ventricular arrhythmias in 1. EPS included bursts of ventricular pacing and programmed ventricular extrastimulation reproducing short-long sequences. Genetic screening involved direct sequencing of genes involved in long QT syndrome as well as RyR2.RESULTS Six patients demonstrated a marked increase in QT interval only in the first beat after cessation of ventricular pacing and/or extrastimulation. All 6 patients were found to have a heterozygous missense mutation (M4109R) in RyR2. Two of them, presenting with aborted SCD, also had a second missense mutation (I406T- RyR2). Four family members without RyR2 mutations did not display prominent postpacing QT changes.CONCLUSION M4109R- RyR2 is associated with a high incidence of SCD. The contribution of I406T to the clinical phenotype is unclear. In contrast to exercise testing, marked postpacing repolarization changes in a single beat accurately predicted carriers of M4109R- RyR2 in this family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progesterone-receptor complex from freshly prepared hen oviduct cytosol acquired the ability to bind to isolated nuclei, DNA-cellulose and ATP-Sepharose when incubated with 5-10 mM ATP at 4°C. The extent of this ATP-dependent activation was higher when compared with heat-activation achieved by warming the progesterone- receptor complex at 23 °C. The transformation of progesterone-receptor complex which occurred in a time-dependent manner was only partially dependent on hormone presence. The ATP effect was selective in causing this transformation whereas ADP, AMP and cAMP failed to show any such effect. The non-hydrolizable analogs of ATP, adenosine 5'-[a,/3-methylene]triphosphate and adenosine 5-[/l,y-imido]triphosphate were also found to be ineffective. Presence of 10 mM sodium molybdate blocked both the ATP and the heat-activation of progesterone-receptor complex. Mn" or Mg` had no detectable effect on the receptor activation but the presence of Ca" increased the extent of ATP-activation slightly. EDTA presence (> 5 mM) decreased the extent of receptor activation by about 40 % and was, therefore, not included in the buffers used for activation studies. Divalent cations were also ineffective when tested in the presence of 1- 5 mM EDTA. The properties of progesterone-receptor complex remained intact under the above conditions when analyzed for steroid-binding specificity and Scatchard analysis. However, the ATP-activated progesterone-receptor complex lost the ability to aggregate when tested on low-salt sucrose gradients. ATP was equally effective in activating the rat-uterine estradiol-receptor complex at 4 "C and influenced the transformation of 4-S receptor form into a 5-S form when analyzed on sucrose gradients containing 0.3 M KCI. The presence of ATP also increased the rate of activation of progesterone-receptor complex at 23 °C. These findings suggest a role for ATP in receptor function and offer a convenient method of studying the process of receptor activation at low temperature and mild assay conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-l-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (K) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the role of oxygen, epinephrine and glucose supplementation in regulating neurotransmitter contents, adrenergic and glutamate receptor binding parameters in the cerebral cortex of experimental groups of neonatal rats were investigated. The study of neurotransmitters and their receptors in the cerebral cortex and the EEG pattern in the brain regions of neonatal rats were taken as index for brain damage due to hypoxia, oxygen and epinephrine. Real-Time PCR work was done to confirm the binding parameters. Second messenger, cyclic Adenosine Monophosphate (cAMP) was assayed to find the functional correlation of the receptors. Behavioural studies were carried out to confirm the biochemical and molecular studies. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The addictive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures from the molecular study brought to practice will lead to maintain healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin- stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca2+ mobilisation. in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1 alpha (D26A) (MIP-1 alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCLS), MIP-1 beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin -stimulated CAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCLS, CCL8 and CCL13 were able to stimulate Ca2+ mobilisation. through CCRS, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca2+ responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca2+ mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca2+ mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCRS. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+, resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A3 receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca2+ also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A3 receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-Amino-3-benzoylthiophenes are allosteric enhancers (AE) of agonist activity at the A1 adenosine receptor. The present report describes syntheses and assays of the AE activity at the human A1AR (hA1AR) of a panel of compounds consisting of nine 2-amino-3-aroylthiophenes (3a-i), eight 2-amino-3-benzoyl-4,5-dimethylthiophenes (12a-h), three 3-aroyl-2-carboxy-4,5- dimethylthiophenes (15a-c), 10 2-amino-3-benzoyl-5,6-dihydro 4H-cyclopenta[b]thiophenes (17a-j), 14 2-amino-3-benzoyl-4,5,6,7-tetrahydrobenzo[b]thiophenes (18a-n), and 15 2-amino- 3-benzoyl-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophenes (19a-o). An in vitro assay employing the A1AR agonist [125I]ABA and membranes from CHO-K1 cells stably expressing the hA1AR measured, as an index of AE activity, the ability of a candidate AE to stabilize the agonist- A1AR-G protein ternary complex. Compounds 3a-i had little or no AE activity, and compounds 12a-h had only modest activity, evidence that AE activity depended absolutely on the presence of at least a methyl group at C-4 and C-5. Compounds 17a-c lacked AE activity, suggesting the 2-amino group is essential. Polymethylene bridges linked thiophene C-4 and C-5 of compounds 17a-j, 18a-n, and 19a-o. AE activity increased with the size of the -(CH2)n- bridge, n ) 3 < n ) 4 < n ) 5. The 3-carbethoxy substituents of 17a, 18a, and 19a did not support AE activity, but a 3-aroyl group did. Bulky (or hydrophobic) substituents at the meta and para positions of the 3-benzoyl group and also 3-naphthoyl groups greatly enhanced activity. Thus, the hA1AR contains an allosteric binding site able to accommodate 3-aroyl substituents that are bulky and/or hydrophobic but not necessarily planar. A second region in the allosteric binding site interacts constructively with alkyl substituents at thiophene C-4 and/or C-5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular adenosine 5′-triphosphate (ATP) is an agonist for the P2Z receptor of human leukaemic lymphocytes and opens a Ca 2+-selective ion channel, which also conducts Ba2+, Sr2+ and the small fluorescent dye, ethidium+. A wide range of receptor agonists, many of which raise cytosolic [Ca2+] activate phospholipase D (PLD). In the present study, it was shown that both ATP and 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) stimulated PLD activity in a concentration-dependent manner, and the inhibitory effects of suramin, oxidised ATP, extracellular Na+ and Mg2+ suggested that the effect of these agonists is mediated by P2Z receptors. The role of divalent cations in ATP-stimulated PLD activity was investigated. Several agonists (eg ATP, thapsigargin, ionomycin) stimulated a rise in cytosolic [Ca2+] in human lymphocytes, but only ATP and ionomycin stimulated PLD activity. When Ca2+ influx was prevented by EGTA, the majority of ATP-stimulated and all of ionomycin-stimulated PLD activity was inhibited. Preloading cells with the Ca2+ chelator, BAPTA, reduced cytosolic [Ca2+] and, paradoxically, ATP-stimulated PLD activity was potentiated. ATP-stimulated PLD activity was supported by both Ba2+ and Sr2+ when they were substituted for extracellular Ca2+. Furthermore, both ATP-stimulated PLD activity and ATP-stimulated 133Ba2+ influx showed a linear dependence on extracellular [Ba2+]. Thus it was concluded that ATP stimulated PLD activity in direct proportion to the influx of divalent cations through the P2Z ion channel and this PLD activity was insensitive to changes in bulk cytosolic [Ca2+]. The calmodulin (Ca2+/CaM) inhibitor, trifluoperazine (TFP) inhibited ionomycin- and ATP-stimulated PLD activity and ATP-stimulated apoptosis, but had no effect on PLD activity already activated by ATP. However, TFP inhibited ATP-stimulated Ca2+, Ba2+ and ethidium+ fluxes, at concentrations below those which inhibit Ca2+/CaM, suggesting that TFP inhibits the P2Z receptor. Similarly, the isoquinolinesulphonamide, KN-62, a selective inhibitor of Ca2+/CaM-dependent protein kinase II (CaMKII), also prevented ATP-stimulated apoptosis, but had no effect on pre-activated PLD. In addition, KN-62, and an analogue, KN-04, which has no effect on CaMKII, potently inhibited ATP-stimulated Ba2+ influx (IC50 12.7 ± 1.5 and 17.3 ± 2.7 nM, respectively), ATP-stimulated ethidium+ uptake (IC50 13.1 ± 2.6 and 37.2 ± 8.9 nM, respectively), ATP-stimulated phospholipase D activity (50% inhibition 5.9 ± 1.2 and 9.7 ± 2.8 nM, respectively) and ATP-induced shedding of the surface adhesion molecule, L-selectin (IC50 31.5 ± 4.5 and 78.7 ± 10.8 nM, respectively). They did not inhibit phorbol ester- or ionomycin-stimulated PLD activity or phorbol ester-induced L-selectin shedding. Neither KN-62 nor KN-04 (both 500 nM) have any effect on UTP-stimulated Ca2+ transients in fura-2-loaded human neutrophils, a response which is mediated by the P2Y2 receptor, neither did they inhibit ATP-stimulated contractile responses mediated by the P2X1 receptor of guinea pig urinary bladder. Thus, KN-62 and KN-04 are almost equipotent as P2Z inhibitors with IC50s in the nanomolar, indicating that their actions cannot be due to CaMKII inhibition, but rather that they are potent and direct inhibitors of the P2Z receptor. Extracellular ATP-induced shedding of L-selectin from lymphocytes into the medium is a Ca2+-independent response. L-selectin is either cleaved by a metalloproteinase or a PLD with specificity for glycosylphosphatidylinositol (GPI). The novel hydroxamic acid-based zinc chelator, Ro-31-9790 blocks ATP-induced L-selectin shedding, but was without effect on ATP-induced Ba2+ influx or ATP-stimulated PLD activity. Furthermore, another zinc chelator, 1,10-phenanthroline, an inhibitor of a GPI-PLD, potentiated rather than inhibited ATP-stimulated PLD activity, suggesting that ATP-induced L-selectin shedding and ATP-stimulated PLD activity are independent of each other. Although extracellular ATP is the natural ligand for the lymphocyte P2Z receptor, it is less potent than BzATP in stimulating Ba2+ influx. Concentration-response curves for BzATP- and ATP-stimulated ethidium+ influx gave EC50s 15.4 ± 1.4 µM and 85.6 ± 8.8 µM, respectively. The maximal response to ATP was only 69.8 ± 1.9% of that for BzATP. Hill coefficients were 3.17 ± 0.24 and 2.09 ± 0.45 for BzATP and ATP respectively, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z-operated ion channel. A rank order of agonist potency of BzATP > ATP = 2MeSATP > ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP > ATP > 2MeSATP > ATPγS. When ATP (300 -1000 µM) was added simultaneously with 30 µM BzATP (EC90), it reduced both ethidium+ and Ba2+ fluxes by 30 - 40% relative to values observed with BzATP alone. KN-62, previously shown to be a specific inhibitor of the lymphocyte P2Z receptor, was a less potent antagonist of BzATP-induced fluxes than ATP, when maximal concentrations of both agonists (50 and 500 µM respectively) were used. However, when BzATP (18 µM) was used at a concentration equiactive with a maximally effective ATP concentration, KN-62 showed the same inhibitory potency for both agonists. The ecto-ATPase antagonist, ARL-67156, inhibited both ATP- and BzATP-stimulated Ba2+ influx, suggesting that the lower efficacy of ATP compared with BzATP was not due to preferential hydrolysis of ATP. Thus, the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a full agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes. Both ATP- and BzATP-stimulated PLD activity were significantly inhibited (P < 0.05) when cells were suspended in iso-osmotic choline Cl medium. Choline+ was found to be a permeant for the P2Z ion channel, since ATP induced a large uptake of [14C]choline+ (60 to 150 µmol/ml intracellular water) during a 5 min incubation, which remained in the cells for several hours, and ATP was used to load cells with these levels of choline+. Intracellular choline+ inhibited ATP-, BzATP-, PMA- and ionomycin-stimulated PLD activity. Brief exposure of lymphocytes to ATP increased the subsequent basal rate of ethidium+ uptake, and this was prevented by intracellular choline+. It is proposed that P2Z-mediated Ca2+ influx in lymphocytes activates PLD leading to significantly changes of the phospholipid composition of the plasma membrane, which subsequently produces a permeability lesion, which in turn contributes to cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-Ethylcarboxamidoadenosine (12) was synthesised from adenosine (1) and the 6-chloro-2’,3’-O-isopropylidene-AT-ethylcarboxamidoadenosine (25) was synthesised from inosine (19). Employing molecular modelling techniques and the results from previous structure activity relationships it was possible to design and synthesise a N6-substituted N-ethylcarboxamidoadenosines which possessed an oxygen in the N6-substituent either in the form of an epoxide (which was obtained by cpoxidising an alkene with m-CPBA or dimethyldioxirane) or in the form of a cyclic ether as was the case for N6-((tetrahydro-2H--pyran--2-yl)methyl-N-ethylcarboxamidoadenosine (78). These compounds were tested for their biological activity at the A1 adenosine receptor by their ability to inhibit cAMP accumulation in DDT, MF2 cells. The EC50 values obtained indicated that the N6-(norborn-5-en-2-yl)-N-ethylcarboxamidoadenosines were the most potent. Of theseN6-(S-endo-norbrn-5-en-2-yI)-N-ethylcarboxaniidoadenosine (56) was the most potent (0.2 nM). N6-(exo-norborn-5-en-2-yl)-2-iodo-N-ethylcarboxamidoadenosine (79) was synthesised from guanosine (22) and was also evaluated for its potency at the A, receptor (24.8 ± 1.5 nM). At present 79 is being evaluated for its selectivity for the A1 receptor compared to the other three receptor subtypes (A2a, A2b, A3). A series of N6-(benzyl)-N-ethylcarboxamidoadenosines were synthesised with substitutions at the 4-position of the phenyl ring. Another series of compounds were synthesised which replaced the methylene spacer between the N6H and the N6-aromatic or lipophilic substituent The replacement groups -were carbonyl and trans-2- cyclopropyl moieties. The N6-acyl compounds were obtained by reacting 2’,3’-O- di(tert-butyldimethylsilyl)-AT-ethylcarboxamidoadenosinc (59) with the appropriate acid chloride and then deprotecting with lelrabutylammonium fluoride in tetrahydrofuran. The compound N6-(4-(1,2-dihydroxy)ethyl)benzyl-N- ethylcarboxamidoadenosine (125) was synthesised by the reaction of 4-(1,2-0- isopropylidene-ethyl)benzyl aminc (123) with 6-chloro-2,3-0-isopropylidene-N- ethylcarboxamidoadenosine (25). Compound 123 was synthesised from an epoxidation of vinylbenzyl phthalimide (118) followed by an acidic ring opening to yield the diol which was isopropylidenated to yield 4-(l,2-O-isopropylidene- elhyl)benzyl phlhalimide (122), It was hoped that the presence of the diol functionality in 125 would increase water solubility whilst maintaining potency at the A3 receptor.