964 resultados para Adeno-associated virus vector
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Vascular endothelial growth factor (VEGF) is one of the major mediators of retinal ischemia-associated neovascularization. We have shown here that adeno-associated virus (AAV)-mediated expression of sFIt-1, a soluble form of the Flt-1 VEGF receptor, was maintained for up to 8 and 17 months postinjection in mice and in monkeys, respectively. The expression of sFIt-1 was associated with the long-term (8 months) regression of neovascular vessels in 85% of trVEGF029 eyes. In addition, it resulted in the maintenance of retinal morphology, as the majority of the treated trVEGF029 eyes (75%) retained high numbers of photoreceptors, and in retinal function as measured by electroretinography. AAV-mediated expression of sFIt-1 prevented the development of laser photocoagulation-incluced choroidal neovascularization in all treated monkey eyes. There were no clinically or histologically detectable signs of toxicity present in either animal model following AAV.sFlt injection. These results suggest that AAV-mediated secretion gene therapy could be considered for treatment of retinal and choroidal neovascularizations.
Resumo:
Leptin and Y2 receptors on hypothalamic NPY neurons mediate leptin effects on energy homeostasis; however, their interaction in modulating osteoblast activity is not established. Here, direct testing of this possibility indicates distinct mechanisms of action for leptin anti-osteogenic and Y2(-/-) anabolic pathways in modulating bone formation. Introduction: Central enhancement of bone formation by hypothalamic neurons is observed in leptin-deficient oblob and Y2 receptor null mice. Similar elevation in central neuropeptide Y (NPY) expression and effects on osteoblast activity in these two models suggest a shared pathway between leptin and Y2 receptors in the central control of bone physiology. The aim of this study was to test whether the leptin and Y2 receptor pathways regulate bone by the same or distinct mechanisms. Materials and Methods: The interaction of concomitant leptin and Y2 receptor deficiency in controlling bone was examined in Y2(-/-) oblob double mutant mice, to determine whether leptin and Y2 receptor deficiency have additive effects. Interaction between leptin excess and Y2 receptor deletion was examined using recombinant adeno-associated viral vector overproduction of NPY (AAV-NPY) to produce weight gain and thus leptin excess in adult Y2(-/-) mice. Cancellous bone volume and bone cell function were assessed. Results: Osteoblast activity was comparably elevated in oblob, Y2(-/-), and Y2(-/-) oblob mice. However, greater bone resorption in oblob and Y2(-/-) oblob mice reduced cancellous bone volume compared with Y2(-/-). Both wildtype and Y2(-/-) AAV-NPY mice exhibited marked elevation of white adipose tissue accumulation and hence leptin expression, thereby reducing osteoblast activity. Despite this anti-osteogenic leptin effect in the obese AAV-NPY model, osteoblast activity in Y2(-/-) AAV-NPY mice remained significantly greater than in wildtype AAV-NPY mice. Conclusions: This study suggests that NPY is not a key regulator of the leptin-dependent osteoblast activity, because both the leptin-deficient stimulation of bone formation and the excess leptin inhibition of bone formation can occur in the presence of high hypothalamic NPY. The Y2(-/-) pathway acts consistently to stimulate bone formation; in contrast, leptin continues to suppress bone formation as circulating levels increase. As a result, they act increasingly in opposition as obesity becomes more marked. Thus, in the absence of leptin, the cancellous bone response to loss of Y2 receptor and leptin activity can not be distinguished. However, as leptin levels increase to physiological levels, distinct signaling pathways are revealed.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of ""sectoring"" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Tospoviruses (Genus Tospovirus, Family Bunyaviridae) are phytopathogens responsible for significant worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small), M (Medium) and L (Large) RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner. For new tospovirus species acceptance, several analyses are needed, e. g., the determination of the viral protein sequences for enlightenment of their evolutionary history. Methodology/Principal Findings: Biological (host range and symptomatology), serological, and molecular (S and M RNA sequencing and evolutionary studies) experiments were performed to characterize and differentiate a new tospovirus species, Bean necrotic mosaic virus (BeNMV), which naturally infects common beans in Brazil. Based upon the results, BeNMV can be classified as a novel species and, together with Soybean vein necrosis-associated virus (SVNaV), they represent members of a new evolutionary lineage within the genus Tospovirus. Conclusion/Significances: Taken together, these evidences suggest that two divergent lineages of tospoviruses are circulating in the American continent and, based on the main clades diversity (American and Eurasian lineages), new tospovirus species related to the BeNMV-SVNaV clade remain to be discovered. This possible greater diversity of tospoviruses may be reflected in a higher number of crops as natural hosts, increasing the economic impact on agriculture. This idea also is supported since BeNMV and SVNaV were discovered naturally infecting atypical hosts (common bean and soybean, respectively), indicating, in this case, a preference for leguminous species. Further studies, for instance a survey focusing on crops, specifically of leguminous plants, may reveal a greater tospovirus diversity not only in the Americas (where both viruses were reported), but throughout the world.
Resumo:
Rubella virus (RV) typically causes a mild childhood illness, but complications can result from both viral and immune-mediated pathogenesis. RV can persist in the presence of neutralizing antibodies, suggesting that cell-mediated immune responses may be necessary for viral clearance. However, the molecular determinants recognized by RV-specific T-cells have not been identified. Using recombinant proteins which express the entire RV structural open reading frame in proliferation assays with lymphocytes of RV-immune individuals, domains which elicit major histocompatibility complex class II-restricted helper T-cells were identified. Synthetic peptides representing these domains were used to define specific epitopes. Two immunodominant domains were mapped to the capsid protein sequence C$\sb1$-C$\sb{29}$ and the E1 glycoprotein sequence E1$\sb{202}$-E1$\sb{283}.$ RV-specific MHC class I-restricted cytotoxic T lymphocytes (CTLs) were identified using a chromium-release assay with infected fibroblasts as target cells. An infectious Sindbis virus vector expressing each of the RV structural proteins identified the capsid, E2 and E1 proteins as targets of CTLs. Specific CTL epitopes were mapped within the previously identified immunodominant domains. This study identified domains of the RV structural proteins that may be beneficial for development of a synthetic vaccine, and provides normative data on RV-specific T-cell responses that should enhance our ability to understand RV persistence and associated complications. ^
Resumo:
Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly,generally adapting to each type of virus?vector relationship in a way that enhances transmissionefficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant,cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypiiGlover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferousaphids changed their alighting, settling and probing behaviour activities over time when exposed toCMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate fromCMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), butshowed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min afterrelease. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected overmock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage andaphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph(EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of shortsuperficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (sec-ond hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much lesstime spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour includingan early increase in the number of short superficial probes and intracellular punctures followed by aphloem feeding deterrence is known to enhance the transmission efficiency of viruses transmitted in aNP manner. We conclude that CMV induces specific changes in a plant host that modify the alighting,settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spreadof the virus. Our findings should be considered when modelling the spread of viruses transmitted in a NPmanner.
Resumo:
Abstract Grapevine leafroll disease is associated with several species of phloem-limited grapevine leafrollassociated viruses (GLRaV), some of which are transmitted by mealybugs and scale insects. The grape phylloxera, Daktulosphaira vitifoliae (Fitch) Biotype A (Hemiptera: Phylloxeridae), is a common vineyard pest that feeds on the phloem of vine roots. There is concern that these insects may transmit one or more GLRaV species, particularly GLRaV-2, a species in the genus Closterovirus. A field survey was performed in vineyards with a high incidence of grapevine leafroll disease and D. vitifoliae was assessed for acquisition of GLRaV. In greenhouse experiments, the ability of D. vitifoliae to transmit GLRaV from infected root sections or vines to co-planted virus-free recipient vines was tested. There were no GLRaV-positive D. vitifoliae in the field survey, nor did D. vitifoliae transmit GLRaV- 1, ?2, ?3, or -4LV in greenhouse transmission experiments. Some insects tested positive for GLRaV after feeding on infected source vines in the greenhouse, however there was no evidence of virus transmission to healthy plants. These findings, in combination with the sedentary behaviour of the soil biotype of D. vitifoliae, make it unlikely that D. vitifoliae is a vector of any GLRaV.
Resumo:
Coquillettidia linealis is a severe pest on some of the Moreton Bay islands in Queensland, Australia, but little is known of its breeding habitats and biology. Because of its high abundance and its association with Ross River (RR) and Barmah Forest (BF) viruses by field isolation, its vector competence was evaluated in the laboratory by feeding dilutions of both viruses in blood. For RR, Cq. linealis was of comparable efficiency to Ochlerotatus vigilax (Skuse), recognised as being a major vector. Results were as follows for Cq. linealis and Oc. vigilax , respectively: dose to infect 50%, 10(2.2) and
Resumo:
A total of 138 patients with the age of 4 months to 57 years were attended in different hospitals of São Paulo State with aseptic meningitis. A probable new agent was isolated from the cerebrospinal fluid of 35 of 53 specimens examined. Replication of the agent with similar characteristics was detected by CPE produced in the MDCK cell line. Virus-like particles measuring about 40 nm in diameter were observed by negative staining electron microscopy. No hemaglutinating activity was detected at pH 7.2 by using either human, guinea pig, chicken and at pH ranged 6.0 - 7.2 with goose red blood cells. The agent was not pathogenic to newborn or adult mice. Virus infectivity as measured by CPE was sensitive to chloroform and not inhibited by BuDR, suggesting that agent is an enveloped virus with RNA genome.
Resumo:
La créatine joue un rôle essentiel dans le métabolisme cellulaire par sa conversion, par la creatine kinase, en phosphocreatine permettant la régénération de l'ATP. La synthèse de créatine, chez les mammifères, s'effectue par une réaction en deux étapes impliquant Γ arginine: glycine amidinotransférase (AGAT) et la guanidinoacétate méthyltransférase (GAMT). L'entrée de créatine dans les cellules s'effectue par son transporteur, SLC6A8. Les déficiences en créatine, dues au déficit en GAMT, AGAT ou SLC6A8, sont fréquentes et caractérisées par une absence ou une forte baisse de créatine dans le système nerveux central. Alors qu'il est connu que AGAT, GAMT et SLC6A8 sont exprimés par le cerveau, les conséquences des déficiences en créatine sur les cellules nerveuses sont peu comprises. Le but de ce travail était de développer de nouveaux modèles expérimentaux des déficiences en Cr dans des cultures 3D de cellules nerveuses de rat en agrégats au moyen de l'interférence à l'ARN appliquée aux gènes GAMT et SLC6A8. Des séquences interférentes (shRNAs) pour les gènes GAMT et SLC6A8 ont été transduites par des vecteurs viraux AAV (virus adéno-associés), dans les cellules nerveuses en agrégats. Nous avons ainsi démontré une baisse de l'expression de GAMT au niveau protéique (mesuré par western blot), et ARN messager (mesuré par qPCR) ainsi qu'une variation caractérisitique de créatine et guanidinoacétate (mesuré par spectrométrie de masse). Après avoir validé nos modèles, nous avons montré que les knockdown de GAMT ou SLC6A8 affectent le développement des astrocytes et des neurones ou des oligodendrocytes et des astrocytes, respectivement, ainsi qu'une augmentation de la mort cellulaire et des modifications dans le pattern d'activation des voies de signalisation impliquant caspase 3 et p38 MAPK, ayant un rôle dans le processus d'apoptose. - Creatine plays essential roles in energy metabolism by the interconversion, by creatine kinase, to its phosphorylated analogue, phosphocreatine, allowing the regeneration of ATP. Creatine is synthesized in mammals by a two step mechanism involving arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine is taken up by cells by a specific transporter, SLC6A8. Creatine deficiency syndromes, due to defects in GAMT, AGAT and SLC6A8, are among the most frequent inborn errors of metabolism, and are characterized by an absence or a severe decrease of creatine in central nervous system, which is the main tissue affected. While it is known that AGAT, GAMT and SLC6A8 are expressed in CNS, many questions remain on the specific effects of AGAT, GAMT and SLC6A8 deficiencies on brain cells. Our aim was to develop new experimental models of creatine deficiencies by knockdown of GAMT and SLC6A8 genes by RNAi in 3D organotypic rat brain cell cultures in aggregates. Specific shRNAs for the GAMT and SLC6A8 genes were transduced in brain cell aggregates by adeno-associated viruses (AAV). The AAV-transduced shRNAs were able to efficiently knockdown the expression of our genes of interest, as shown by a strong decrease of protein by western blotting, a decrease of mRNA by qPCR or characteristic variations of creatine and guanidinoacetate by tandem mass spectrometry. After having validated our experimental models, we have also shown that GAMT and SLC6A8 knockdown affected the development of astrocytes and neurons or oligodendrocytes and astrocytes, respectively. We also observed an increase of cell death and variations in activation pattern of caspase 3 and p38 MAPK pathways, involved in apoptosis, in our experimental model.
Resumo:
The detection of Parkinson's disease (PD) in its preclinical stages prior to outright neurodegeneration is essential to the development of neuroprotective therapies and could reduce the number of misdiagnosed patients. However, early diagnosis is currently hampered by lack of reliable biomarkers. (1) H magnetic resonance spectroscopy (MRS) offers a noninvasive measure of brain metabolite levels that allows the identification of such potential biomarkers. This study aimed at using MRS on an ultrahigh field 14.1 T magnet to explore the striatal metabolic changes occurring in two different rat models of the disease. Rats lesioned by the injection of 6-hydroxydopamine (6-OHDA) in the medial-forebrain bundle were used to model a complete nigrostriatal lesion while a genetic model based on the nigral injection of an adeno-associated viral (AAV) vector coding for the human α-synuclein was used to model a progressive neurodegeneration and dopaminergic neuron dysfunction, thereby replicating conditions closer to early pathological stages of PD. MRS measurements in the striatum of the 6-OHDA rats revealed significant decreases in glutamate and N-acetyl-aspartate levels and a significant increase in GABA level in the ipsilateral hemisphere compared with the contralateral one, while the αSyn overexpressing rats showed a significant increase in the GABA striatal level only. Therefore, we conclude that MRS measurements of striatal GABA levels could allow for the detection of early nigrostriatal defects prior to outright neurodegeneration and, as such, offers great potential as a sensitive biomarker of presymptomatic PD.
Resumo:
The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for the safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors (recombinant adeno-associated viral vectors pseudotyped with viral capsids from serotype 1) using the tetracycline-inducible (TetON) expression cassette in comparison with the cytomegalovirus (CMV) promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although green fluorescent protein (GFP) was expressed mainly in neurons with both vectors, the relative proportions of DARPP-32-positive projection neurons and parvalbumin-positive interneurons were, respectively, 13:1 and 2:1 for the CMV and TetON vectors. DARP32-positive neurons projecting to the globus pallidus were strongly GFP positive with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV vector but poorly by the TetON vector. Numerous GFP-positive cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP-positive neurons were observed with the CMV vector but not the TetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-TetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase-positive neurons by the TetON vector whereas with the CMV vector, GFP-positive cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-TetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.