761 resultados para Adaptive Neuro-Fuzzy Inference System (ANFIS)
Resumo:
Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining
Resumo:
Collaborative networks are typically formed by heterogeneous and autonomous entities, and thus it is natural that each member has its own set of core-values. Since these values somehow drive the behaviour of the involved entities, the ability to quickly identify partners with compatible or common core-values represents an important element for the success of collaborative networks. However, tools to assess or measure the level of alignment of core-values are lacking. Since the concept of 'alignment' in this context is still ill-defined and shows a multifaceted nature, three perspectives are discussed. The first one uses a causal maps approach in order to capture, structure, and represent the influence relationships among core-values. This representation provides the basis to measure the alignment in terms of the structural similarity and influence among value systems. The second perspective considers the compatibility and incompatibility among core-values in order to define the alignment level. Under this perspective we propose a fuzzy inference system to estimate the alignment level, since this approach allows dealing with variables that are vaguely defined, and whose inter-relationships are difficult to define. Another advantage provided by this method is the possibility to incorporate expert human judgment in the definition of the alignment level. The last perspective uses a belief Bayesian network method, and was selected in order to assess the alignment level based on members' past behaviour. An example of application is presented where the details of each method are discussed.
Resumo:
Apesar das diversas vantagens oferecidas pelas redes neurais artificiais (RNAs), algumas limitações ainda impedem sua larga utilização, principalmente em aplicações que necessitem de tomada de decisões essenciais para garantir a segurança em ambientes como, por exemplo, em Sistemas de Energia. Uma das principais limitações das RNAs diz respeito à incapacidade que estas redes apresentam de explicar como chegam a determinadas decisões; explicação esta que seja humanamente compreensível. Desta forma, este trabalho propõe um método para extração de regras a partir do mapa auto-organizável de Kohonen, projetando um sistema de inferência difusa capaz de explicar as decisões/classificação obtidas através do mapa. A metodologia proposta é aplicada ao problema de diagnóstico de faltas incipientes em transformadores, em que se obtém um sistema classificatório eficiente e com capacidade de explicação em relação aos resultados obtidos, o que gera mais confiança aos especialistas da área na hora de tomar decisões.
Resumo:
This research aimed to develop a Fuzzy inference based on expert system to help preventing lameness in dairy cattle. Hoof length, nutritional parameters and floor material properties (roughness) were used to build the Fuzzy inference system. The expert system architecture was defined using Unified Modelling Language (UML). Data were collected in a commercial dairy herd using two different subgroups (H-1 and H-2), in order to validate the Fuzzy inference functions. The numbers of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) responses were used to build the classifier system up, after an established gold standard comparison. A Lesion Incidence Possibility (LIP) developed function indicates the chances of a cow becoming lame. The obtained lameness percentage in H-1 and H-2 was 8.40% and 1.77%, respectively. The system estimated a Lesion Incidence Possibility (LIP) of 5.00% and 2.00% in H-1 and H-2, respectively. The system simulation presented 3.40% difference from real cattle lameness data for H-1, while for H-2, it was 0.23%; indicating the system efficiency in decision-making.
Resumo:
A eficiência e a racionalidade energética da iluminação pública têm relevante importância no sistema elétrico, porque contribui para diminuir a necessidade de investimentos na construção de novas fontes geradoras de energia elétrica e nos desperdícios energéticos. Apresenta-se como objetivo deste trabalho de pesquisa o desenvolvimento e aplicação do IDE (índice de desempenho energético), fundamentado no sistema de inferência nebulosa e indicadores de eficiência e racionalidade de uso da energia elétrica. A opção em utilizar a inferência nebulosa deve-se aos fatos de sua capacidade de reproduzir parte do raciocínio humano, e estabelecer relação entre a diversidade de indicadores envolvidos. Para a consecução do sistema de inferência nebulosa, foram definidas como variáveis de entrada: os indicadores de eficiência e racionalidade; o método de inferência foi baseado em regras produzidas por especialista em iluminação pública, e como saída um número real que caracteriza o IDE. Os indicadores de eficiência e racionalidade são divididos em duas classes: globais e específicos. Os indicadores globais são: FP (fator de potência), FC (fator de carga) e FD (fator de demanda). Os indicadores específicos são: FU (fator de utilização), ICA (consumo de energia por área iluminada), IE (intensidade energética) e IL (intensidade de iluminação natural). Para a aplicação deste trabalho, foi selecionada e caracterizada a iluminação pública da Cidade Universitária \"Armando de Salles Oliveira\" da Universidade de São Paulo. Sendo assim, o gestor do sistema de iluminação, a partir do índice desenvolvido neste trabalho, dispõe de condições para avaliar o uso da energia elétrica e, desta forma, elaborar e simular estratégias com o objetivo de economizá-la.
Resumo:
Experimental studies were carried out on a bench-scale nitrogen removal system with a predenitrification configuration to gain insights into the spatial and temporal variations of DO, pH and ORP in such systems. It is demonstrated that these signals correlate strongly with the operational states of the system, and could therefore be used as system performance indicators. The DO concentration in the first aerobic zone, when receiving constant aeration, and the net pH change between the last and first aerobic zones display strong correlations with the influent ammonia concentration for the domestic wastewater used in this study. The pH profile along the aerobic zones gives good indication on the extent of nitrification. The experimental results also showed a good correlation between ORP values in the last aerobic zone and effluent ammonia and nitrate concentrations, provided that DO in this zone is controlled at a constant level. These results suggest that the DO, pH and ORP sensors could potentially be used as alternatives to the on-line nutrient sensors for the control of continuous systems. An idea of using a fuzzy inference system to make an integrated use of these signals for on-line aeration control is presented and demonstrated on the bench-scale system with promising results. The use of these sensors has to date only been demonstrated in intermittent systems, such as sequencing batch reactor systems.
Resumo:
Semi-autonomous avatars should be both realistic and believable. The goal is to learn from and reproduce the behaviours of the user-controlled input to enable semi-autonomous avatars to plausibly interact with their human-controlled counterparts. A powerful tool for embedding autonomous behaviour is learning by imitation. Hence, in this paper an ensemble of fuzzy inference systems cluster the user input data to identify natural groupings within the data to describe the users movement and actions in a more abstract way. Multiple clustering algorithms are investigated along with a neuro-fuzzy classifier; and an ensemble of fuzzy systems are evaluated.
Resumo:
The Fuzzy ART system introduced herein incorporates computations from fuzzy set theory into ART 1. For example, the intersection (n) operator used in ART 1 learning is replaced by the MIN operator (A) of fuzzy set theory. Fuzzy ART reduces to ART 1 in response to binary input vectors, but can also learn stable categories in response to analog input vectors. In particular, the MIN operator reduces to the intersection operator in the binary case. Learning is stable because all adaptive weights can only decrease in time. A preprocessing step, called complement coding, uses on-cell and off-cell responses to prevent category proliferation. Complement coding normalizes input vectors while preserving the amplitudes of individual feature activations.
Resumo:
Shape Memory Alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.
Resumo:
This paper proposes an efficient learning mechanism to build fuzzy rule-based systems through the construction of sparse least-squares support vector machines (LS-SVMs). In addition to the significantly reduced computational complexity in model training, the resultant LS-SVM-based fuzzy system is sparser while offers satisfactory generalization capability over unseen data. It is well known that the LS-SVMs have their computational advantage over conventional SVMs in the model training process; however, the model sparseness is lost, which is the main drawback of LS-SVMs. This is an open problem for the LS-SVMs. To tackle the nonsparseness issue, a new regression alternative to the Lagrangian solution for the LS-SVM is first presented. A novel efficient learning mechanism is then proposed in this paper to extract a sparse set of support vectors for generating fuzzy IF-THEN rules. This novel mechanism works in a stepwise subset selection manner, including a forward expansion phase and a backward exclusion phase in each selection step. The implementation of the algorithm is computationally very efficient due to the introduction of a few key techniques to avoid the matrix inverse operations to accelerate the training process. The computational efficiency is also confirmed by detailed computational complexity analysis. As a result, the proposed approach is not only able to achieve the sparseness of the resultant LS-SVM-based fuzzy systems but significantly reduces the amount of computational effort in model training as well. Three experimental examples are presented to demonstrate the effectiveness and efficiency of the proposed learning mechanism and the sparseness of the obtained LS-SVM-based fuzzy systems, in comparison with other SVM-based learning techniques.
Resumo:
This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
This paper aims at development of procedures and algorithms for application of artificial intelligence tools to acquire process and analyze various types of knowledge. The proposed environment integrates techniques of knowledge and decision process modeling such as neural networks and fuzzy logic-based reasoning methods. The problem of an identification of complex processes with the use of neuro-fuzzy systems is solved. The proposed classifier has been successfully applied for building one decision support systems for solving managerial problem.