863 resultados para Adaptive Information Dispersal Algorithm


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The problem of finding the optimal join ordering executing a query to a relational database management system is a combinatorial optimization problem, which makes deterministic exhaustive solution search unacceptable for queries with a great number of joined relations. In this work an adaptive genetic algorithm with dynamic population size is proposed for optimizing large join queries. The performance of the algorithm is compared with that of several classical non-deterministic optimization algorithms. Experiments have been performed optimizing several random queries against a randomly generated data dictionary. The proposed adaptive genetic algorithm with probabilistic selection operator outperforms in a number of test runs the canonical genetic algorithm with Elitist selection as well as two common random search strategies and proves to be a viable alternative to existing non-deterministic optimization approaches.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is successful at detecting port scans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Perceptual aliasing makes topological navigation a difficult task. In this paper we present a general approach for topological SLAM~(simultaneous localisation and mapping) which does not require motion or odometry information but only a sequence of noisy measurements from visited places. We propose a particle filtering technique for topological SLAM which relies on a method for disambiguating places which appear indistinguishable using neighbourhood information extracted from the sequence of observations. The algorithm aims to induce a small topological map which is consistent with the observations and simultaneously estimate the location of the robot. The proposed approach is evaluated using a data set of sonar measurements from an indoor environment which contains several similar places. It is demonstrated that our approach is capable of dealing with severe ambiguities and, and that it infers a small map in terms of vertices which is consistent with the sequence of observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automatic detection of suspicious activities in CCTV camera feeds is crucial to the success of video surveillance systems. Such a capability can help transform the dumb CCTV cameras into smart surveillance tools for fighting crime and terror. Learning and classification of basic human actions is a precursor to detecting suspicious activities. Most of the current approaches rely on a non-realistic assumption that a complete dataset of normal human actions is available. This paper presents a different approach to deal with the problem of understanding human actions in video when no prior information is available. This is achieved by working with an incomplete dataset of basic actions which are continuously updated. Initially, all video segments are represented by Bags-Of-Words (BOW) method using only Term Frequency-Inverse Document Frequency (TF-IDF) features. Then, a data-stream clustering algorithm is applied for updating the system's knowledge from the incoming video feeds. Finally, all the actions are classified into different sets. Experiments and comparisons are conducted on the well known Weizmann and KTH datasets to show the efficacy of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is a big challenge to clearly identify the boundary between positive and negative streams for information filtering systems. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on the RCV1 data collection, and substantial experiments show that the proposed approach achieves encouraging performance and the performance is also consistent for adaptive filtering as well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate a modification of the algorithm of Dani et al for the online linear optimization problem in the bandit setting, which allows us to achieve an O( \sqrt{T ln T} ) regret bound in high probability against an adaptive adversary, as opposed to the in expectation result against an oblivious adversary of Dani et al. We obtain the same dependence on the dimension as that exhibited by Dani et al. The results of this paper rest firmly on those of Dani et al and the remarkable technique of Auer et al for obtaining high-probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a novel approach to video deblocking which performs perceptually adaptive bilateral filtering by considering color, intensity, and motion features in a holistic manner. The method is based on bilateral filter which is an effective smoothing filter that preserves edges. The bilateral filter parameters are adaptive and avoid over-blurring of texture regions and at the same time eliminate blocking artefacts in the smooth region and areas of slow motion content. This is achieved by using a saliency map to control the strength of the filter for each individual point in the image based on its perceptual importance. The experimental results demonstrate that the proposed algorithm is effective in deblocking highly compressed video sequences and to avoid over-blurring of edges and textures in salient regions of image.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Subcarrier allocation scheme for Orthogonal Frequency Division Multiplexing(OFDM) based multiuser system is proposed. Most previous algorithms use greedy approach as a subcarrier allocation scheme until a conflict occurs or as an initial first round allocation with improvement steps carried out in next rounds. Our algorithm uses information obtained by the forced costs of a system that incur by a current allocation to make assignment decisions. This algorithm does not rely on greedy approach and therefore can also be considered as a substitute for first layer Greedy algorithms. Simulation results show that for two user case this algorithm gives better or equal allocation 80-90 percent of the time when compared with the greedy allocation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an adaptive metering algorithm for enhancing the electronic screening (e-screening) operation at truck weight stations. This algorithm uses a feedback control mechanism to control the level of truck vehicles entering the weight station. The basic operation of the algorithm allows more trucks to be inspected when the weight station is underutilized by adjusting the weight threshold lower. Alternatively, the algorithm restricts the number of trucks to inspect when the station is overutilized to prevent queue spillover. The proposed control concept is demonstrated and evaluated in a simulation environment. The simulation results demonstrate the considerable benefits of the proposed algorithm in improving overweight enforcement with minimal negative impacts on nonoverweighed trucks. The test results also reveal that the effectiveness of the algorithm improves with higher truck participation rates in the e-screening program.