928 resultados para Adénovirus recombinant
Resumo:
The life cycle of seaweed Laminaria japonica involves a generation alternation between diploid sporophyte and haploid gametophte. The expression of foreign genes in sporophte has been proved. In this research, the recombinant expression in gametophyte was investigated by particle bombardment with the rt-PA gene encoding the recombinant human tissue-type plasminogen activator (Reteplase), which is a thrombolytic agent for acute myocardial infarction (AMI). Transgenic gametophytes were selected by their resistance to herbicide phosphiothricin (PPT), and proliferated in an established bubble column photo-bioreactor. According to the results from quantitative ELISA, Southern blotting, and fibrin agarose plate assay (FAPA) for bioactivity, it was showed that the rt-PA gene had been integrated into the genome of gametophytes of L. japonica, and the expression product showed the expected bioactivity, implying the proper post-transcript modification in haploid gametophyte.
Resumo:
Lysozyme is a widely distributed hydrolase possessing lytic activity against bacterial peptidoglycan, which enables it to protect the host against pathogenic infection. In the present study, the cDNA of an invertebrate goose-type lysozyme (designated CFLysG) was cloned from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CFLysG consisted of 829 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame (ORF) of 603 bp encoding a polypeptide of 200 amino acid residues with a predicted molecular weight of 21.92 kDa and theoretical isoelectric point of 7.76. The high similarity of CFLysG with goose-type (g-type) lysozymes in vertebrate indicated that CFLysG should be an invertebrate counterpart of g-type lysozyme family, which suggested that the origin of g-type lysozyme preceded the emergence of urochordates and even preceded the emergence of deuterostomes. Similar to most g-type lysozymes, CFLysG possessed all conserved features critical for the fundamental structure and function of g-type lysozymes, such as three catalytic residues (Glu 82, Asp 97, Asp 108). By Northern blot analysis, mRNA transcript of CFLysG was found to be most abundantly expressed in the tissues of gills, hepatopancreas and gonad, weakly expressed in the tissues of haemocytes and mantle, while undetectable in the adductor muscle. These results suggested that CFLysG could possess combined features of both the immune and digestive adaptive lysozymes. To gain insight into the in vitro lytic activities of CFLysG, the mature peptide coding region was cloned into Pichia pastoris for heterogeneous expression. Recombinant CFLysG showed inhibitive effect on the growth of both Gram-positive and Gram-negative bacteria with more potent activities against Gram-positive bacteria, which indicated the involvement of CFLysG in the innate immunity of C. farreri. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Antimicrobial peptides are important components of the host innate immune responses by exerting broad-spectrum microbicidal activity against pathogenic microbes. The first mollusk big defensin (designated AiBD) cDNA was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The scallop AiBD consisted of 531 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 122 amino acids. The high similarity of AiBD deduced amino acid sequence with big defensin from Tachypleus tridentatus and Branchiostoma belcheri tsingtaunese indicated that AiBD should be a member of big defensin family. The expression of AiBD in various tissues was measured by using Northern blotting analysis. mRNA transcripts of AiBD could be detected in haemocytes of unchallenged scallops. The temporal expression of AiBD in haemolymph after Vibrio anguilarum challenge was recorded by quantitative real time PCR. The relative expression level of AiBD in haemolymph was up-regulated evenly in the first 8 h, followed by a drastic increase, and increased 131.1-fold at 32 h post-injection. These results indicated that AiBD could be induced by bacterial challenge, and it should participate in the immune responses of A. irradians. Biological activity assay revealed that recombinant AiBD could inhibit the growth of both Gram-positive and Gram-negative bacteria, and also showed strong fungicidal activity towards the expression host. Recombinant expression of AiBD made it possible to further characterize its functions involved in immune responses, and also provided a potential therapeutic agent for disease control in aquaculture. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Allophycocyanin (A-PC) is the main core component of phycobilisome found in blue-green algae. The apo-allophycocyanin and its subunits were expressed in Escherichia coli and their antioxidant properties were evaluated using deoxyribose assay. The result showed that both recombinant allophycocyanin fused with maltose binding protein (MBP) tag and 6 x His-tag and their alpha or beta subunits can scavenge hydroxyl radicals successfully, and the separated g or beta subunits had a higher inhibition effect on hydroxyl radicals than that when they combined together. The scavenging effects increased with the increasing concentration. These results clearly suggested that apo-allophycocyanin is involved in the antioxidant and radical scavenging activity of phycocyanin, and the antioxidant activity may be partially responsible to the anti-tumor effect of the recombinant allophycocyanin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Allophycocyanin is one of the most important marine active peptides. Previous studies suggested that recombinant allophycocyanin (rAPC) could remarkably inhibit the S-180 carcinoma in mice, indicating its potential pharmaceutical uses. Based on intergeneric conjugal transfer, heterologous expression of rAPC was first achieved in marine Streptomyces sp. isolate M097 through inserting the apc gene into the thiostrepton-induced vector pIJ8600. The transformation frequency for this system was approximately 10(-4) exconjugants/recipient. In the transformed Streptomyces sp. isolate M097, the yield of purified rAPC could amount to about 38 mg/l using a simple purification protocol, and HPLC analysis showed that the purity of the protein reached about 91.5%. In vitro activity tests also revealed that the purified rAPC had effective scavenging abilities on superoxide and hydroxyl radicals. This would widen the usefulness of the marine Streptomyces as a host to express the rAPC and to offer industrial strain for the production of rAPC.
Resumo:
Edwardsiella tarda is the etiological agent of edwardsiellosis, a systematic disease that affects a wide range of marine and freshwater fish cultured worldwide. In order to identify E. tarda antigens with vaccine potential, we in this study conducted a systematic search for E. tarda proteins with secretion capacity. One of the proteins thus identified was Esa1, which contains 795 amino acid residues and shares extensive overall sequence identities with the D15-like surface antigens of several bacterial species. In silico analyses indicated that Esa1 localizes to outer membrane and possesses domain structures that are conserved among bacterial surface antigens. The vaccine potential of purified recombinant Esa1 was examined in a Japanese flounder (Paralichthys olivaceus) model, which showed that fish vaccinated with Esa1 exhibited a high level of survival and produced specific serum antibodies. Passive immunization of naive fish with antisera raised against Esa1 resulted in significant protection against E. tarda challenge. Taking advantage of the secretion capacity of Esa1 and the natural gut-colonization ability of a fish commensal strain, we constructed an Esa1-expressing recombinant strain, FP3/pJsa1. Western immunoblot and agglutination analyses showed that FP3/pJsa1 produces outer membrane-localized Esa1 and forms aggregates in the presence of anti-Esa1 antibodies. Vaccination analyses showed that FP3/pJsa1 as an intraperitoneal injection vaccine and an oral vaccine embedded in alginate microspheres produced relative percent survival rates of 79% and 52%, respectively, under severe challenging conditions that resulted in 92-96% mortality in control fish. Further analyses showed that following oral vaccination, FP3/pJsa1 was able to colonize in the gut but unable to disseminate into other tissues. Together these results indicate that Esa1 is a protective immunogen and an effective oral vaccine when delivered by FP3/pJsa1 as a surface-anchored antigen. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
MRF4 is one of muscle regulatory factors and plays critical roles during skeletal muscle development. The muscle development is important for the fish growth which is an important economic factor for the fish culture. To analyze the function of MRF4 in fish, the founder MRF4 antibody was prepared. The flounder MRF4 was cloned, ligated into prokaryotic expression vector pET-30b and expressed in strain E. coli BL21 (130). The recombinant flounder MRF4 fusion protein was soluble and purified with cobalt IMAC resins. To prepare MRF4 polyclonal antibodies, rabbits were immunized with the soluble protein and the increasing level of antibodies was determined by Western blot. Also, the endogenous flounder MRF4 was recognized by the anti-serum. The result further proved the existence of the anti-MRF4 antibody in the anti-serum, which will be useful for studies on the function of flounder MRF4.
Resumo:
Superoxide dismutases are an ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anions. Two unique and highly compartmentalized bay scallop Argopecten irradians superoxide dismutases: MnSOD and ecCuZnSOD, have been molecularly characterized in our previous study. To complete characterize the SOD family in A. irradians, a novel intracellular copper/zinc SOD from the A. irradians (Ai-icCuZnSOD) was obtained and characterized. The full-length cDNA of Ai-icCuZnSOD was 1047 bp with a 459 bp open reading frame encoding 152 amino acids. The genomic length of the Ai-icCuZnSOD gene was about 4279 bp containing 4 exons and 3 introns. The promoter region containing many putative transcription factor binding sites were analyzed. Furthermore, quantitative reverse transcriptase real-time PCR (qRT-PCR) analysis indicated that the highest expression of the Ai-icCuZnSOD was detected in gill and the expression profiles in hemocytes of bay scallops challenged with bacteria Vibrio anguillarum and lipopolysaccharide (LPS) were different. The result presented an increased expression after injection with LPS whereas no significant changes were observed after V. anguillarum injection. A fusion protein containing Ai-icCuZnSOD was produced in vitro. The rAi-icCuZnSOD is a stable enzyme, retaining more than 80% of its activity between 10 and 60 degrees C and keeping above 88% of its activity at pH values between 5.8 and 9. Ai-icCuZnSOD is more stable under alkaline than acidic conditions. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
Mature human interleukin-11 (HuIL-11) is a cytokine consisting of 178 amino acid residues that results from scission of the N-terminal signal peptide, consisting of 21 amino acid residaues, from the corresponding nascent polypeptide. A DNA fragment encoding a truncated HuIL-11 (trHuIL-11), with an additional 5 amino acid residues removed from the N-terminus, was cloned into vector pGEX-2T between the BamHI site and the EcoRI site. Upon transformation with Escherichia coli BL21, the construct over-produced a glutathione S-transferase (GST)-fused protein in a soluble form after IPTG induction. The fusion protein was initially fractionated with butyl-Sepharose 4 fast flow column and by affinity chromatography using a GSH-Sepharose 4B column. On-site enzymatic release with thrombin gave the target protein at 96% purity as judged by SDS-PAGE and HPLC. Expression of the interleukin as a GST-fused protein thus greatly improved downstream processing. Subsequent biological activity assay suggested that trHuIL-11 had similar activity profile to the naturally produced sample and may be a promising candidate for further development as biopharmaceutical.
Resumo:
OBJECTIVE: To investigate the value of serum antitissue transglutaminase IgA antibodies (IgA-TTG) and IgA antiendomysial antibodies (IgA-EMA) in the diagnosis of coeliac disease in cohorts from different geographical areas in Europe. The setting allowed a further comparison between the antibody results and the conventional small-intestinal histology. METHODS: A total of 144 cases with coeliac disease [median age 19.5 years (range 0.9-81.4)], and 127 disease controls [median age 29.2 years (range 0.5-79.0)], were recruited, on the basis of biopsy, from 13 centres in nine countries. All biopsy specimens were re-evaluated and classified blindly a second time by two investigators. IgA-TTG were determined by ELISA with human recombinant antigen and IgA-EMA by an immunofluorescence test with human umbilical cord as antigen. RESULTS: The quality of the biopsy specimens was not acceptable in 29 (10.7%) of 271 cases and a reliable judgement could not be made, mainly due to poor orientation of the samples. The primary clinical diagnosis and the second classification of the biopsy specimens were divergent in nine cases, and one patient was initially enrolled in the wrong group. Thus, 126 coeliac patients and 106 controls, verified by biopsy, remained for final analysis. The sensitivity of IgA-TTG was 94% and IgA-EMA 89%, the specificity was 99% and 98%, respectively. CONCLUSIONS: Serum IgA-TTG measurement is effective and at least as good as IgA-EMA in the identification of coeliac disease. Due to a high percentage of poor histological specimens, the diagnosis of coeliac disease should not depend only on biopsy, but in addition the clinical picture and serology should be considered.
Resumo:
Quantitative models are required to engineer biomaterials with environmentally responsive properties. With this goal in mind, we developed a model that describes the pH-dependent phase behavior of a class of stimulus responsive elastin-like polypeptides (ELPs) that undergo reversible phase separation in response to their solution environment. Under isothermal conditions, charged ELPs can undergo phase separation when their charge is neutralized. Optimization of this behavior has been challenging because the pH at which they phase separate, pHt, depends on their composition, molecular weight, concentration, and temperature. To address this problem, we developed a quantitative model to describe the phase behavior of charged ELPs that uses the Henderson-Hasselbalch relationship to describe the effect of side-chain ionization on the phase-transition temperature of an ELP. The model was validated with pH-responsive ELPs that contained either acidic (Glu) or basic (His) residues. The phase separation of both ELPs fit this model across a range of pH. These results have important implications for applications of pH-responsive ELPs because they provide a quantitative model for the rational design of pH-responsive polypeptides whose transition can be triggered at a specified pH.
Resumo:
UNLABELLED: Vaccine-induced HIV antibodies were evaluated in serum samples collected from healthy Tanzanian volunteers participating in a phase I/II placebo-controlled double blind trial using multi-clade, multigene HIV-DNA priming and recombinant modified vaccinia Ankara (HIV-MVA) virus boosting (HIVIS03). The HIV-DNA vaccine contained plasmids expressing HIV-1 gp160 subtypes A, B, C, Rev B, Gag A, B and RTmut B, and the recombinant HIV-MVA boost expressed CRF01_AE HIV-1 Env subtype E and Gag-Pol subtype A. While no neutralizing antibodies were detected using pseudoviruses in the TZM-bl cell assay, this prime-boost vaccination induced neutralizing antibodies in 83% of HIVIS03 vaccinees when a peripheral blood mononuclear cell (PBMC) assay using luciferase reporter-infectious molecular clones (LucR-IMC) was employed. The serum neutralizing activity was significantly (but not completely) reduced upon depletion of natural killer (NK) cells from PBMC (p=0.006), indicating a role for antibody-mediated Fcγ-receptor function. High levels of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies against CRF01_AE and/or subtype B were subsequently demonstrated in 97% of the sera of vaccinees. The magnitude of ADCC-mediating antibodies against CM235 CRF01_AE IMC-infected cells correlated with neutralizing antibodies against CM235 in the IMC/PBMC assay. In conclusion, HIV-DNA priming, followed by two HIV-MVA boosts elicited potent ADCC responses in a high proportion of Tanzanian vaccinees. Our findings highlight the potential of HIV-DNA prime HIV-MVA boost vaccines for induction of functional antibody responses and suggest this vaccine regimen and ADCC studies as potentially important new avenues in HIV vaccine development. TRIAL REGISTRATION: Controlled-Trials ISRCTN90053831 The Pan African Clinical Trials Registry ATMR2009040001075080 (currently PACTR2009040001075080).
Resumo:
A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8) vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme) enzyme replacement treatment (ERT) for patients with Pompe disease (AAV2/8-LSPhGAApA). The AAV2/8-LSPhGAApA vector at 1.6 × 10(13) vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4(+) (but not CD8(+)) lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD) 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT) was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.
Resumo:
Familial hypercholesterolemia (FH) is a genetic disorder characterized by abnormally high concentrations of low-density lipoprotein-cholesterol (LDLcholesterol) in the blood that can contribute to heart disease. FH can result from a defect in the gene for the LDL receptor (LDL-R). FH patients lacking functional LDL-R may benefit from viral-mediated transfer of a functional copy of the open reading frame (ORF) of the LDL-R. Since a recombinant adeno-associated virus (rAAV) is not immunogenic and can be mass-produced, it shows promise for gene therapy applications. AAV6 and AAV8 have been shown to specifically transduce hepatocytes in several species, which normally remove the majority of LDL-cholesterol from the blood via LDL-R-mediated endocytosis. Because of the potential of rAAV to treat FH by delivery of a correct LDL-R ORF to hepatocytes, the liver specificity of these two AAV serotypes was evaluated. Additionally, rabbits were chosen as the animal model for this study because a specific strain of rabbits, Watanabe heritable hyperlipidemic (WHHL), adequately mimics the pathology of FH in humans. Exposure of rabbit liver to rAAV with the marker LacZ and subsequent inspection of liver tissue showed that AAV8 transduced rabbit liver more efficiently than AAV6. To assess the feasibility of producing a rAAV capable of transferring the LDL-R ORF to rabbit hepatocytes in vivo, rAAV8-LDL-R was mass-produced by a baculovirus system in suspension grown insect cells.