875 resultados para Active and Reactive Power
Resumo:
This paper studies the feasibility of utilizing the reactive power of grid-connected variable-speed wind generators to enhance the steady-state voltage stability margin of the system. Allowing wind generators to work at maximum reactive power limit may cause the system to operate near the steady-state stability limit, which is undesirable. This necessitates proper coordination of reactive power output of wind generators with other reactive power controllers in the grid. This paper presents a trust region framework for coordinating reactive output of wind generators-with other reactive sources for voltage stability enhancement. Case studies on 418-bus equivalent system of Indian southern grid indicates the effectiveness of proposed methodology in enhancing the steady-state voltage stability margin.
Resumo:
A novel semiconductor laser structure is put forward to resolve the major difficulties of high power laser diodes. In this structure, several active regions are cascaded by tunnel junctions to form a large optical cavity and to achieve super high efficiency. This structure can solve the problems of catastrophic optical damage of facet, thermal damage and poor light beam quality effectively. Low-pressure metalorganic chemical vapor deposition method is adopted to grow the novel semiconductor laser structures, which are composed of Si:GaAs/C:GaAs tunnel junctions, GaAs/InGaAs strain quantum well active regions. External differential quantum efficiency as high as 2.2 and light power output of 2.5 W per facet (under 2A drive current) are achieved from an uncoated novel laser device with three active regions.
Resumo:
An energy storage system (ESS) installed in a power system can effectively damp power system oscillations through controlling exchange of either active or reactive power between the ESS and power system. This paper investigates the robustness of damping control implemented by the ESS to the variations of power system operating conditions. It proposes a new analytical method based on the well-known equal-area criterion and small-signal stability analysis. By using the proposed method, it is concluded in the paper that damping control implemented by the ESS through controlling its active power exchange with the power system is robust to the changes of power system operating conditions. While if the ESS damping control is realized by controlling its reactive power exchange with the power system, effectiveness of damping control changes with variations of power system operating condition. In the paper, an example power system installed with a battery ESS (BESS) is presented. Simulation results confirm the analytical conclusions made in the paper about the robustness of ESS damping control. Laboratory experiment of a physical power system installed with a 35kJ/7kW SMES (Superconducting Magnetic Energy Storage) was carried out to evaluate theoretical study. Results are given in the paper, which demonstrate that effectiveness of SMES damping control realized through regulating active power is robust to changes of load conditions of the physical power system.
Resumo:
A three-phase four-wire shunt active power filter for harmonic mitigation and reactive power compensation in power systems supplying nonlinear loads is presented. Three adaptive linear neurons are used to tackle the desired three-phase filter current templates. Another feedforward three-layer neural network is adopted to control the output filter compensating currents online. This is accomplished by producing the appropriate switching patterns of the converter's legs IGBTs. Adequate tracking of the filter current references is obtained by this method. The active filter injects the current required to compensate for the harmonic and reactive components of the line currents, Simulation results of the proposed active filter indicate a remarkable improvement in the source current waveforms. This is reflected in the enhancement of the unified power quality index defined. Also, the filter has exhibited quite a high dynamic response for step variations in the load current, assuring its potential for real-time applications
Resumo:
This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.
Resumo:
This paper presents a new method for online determination of the Thèvenin equivalent parameters of a power system at a given node using the local PMU measurements at that node. The method takes into account the measurement errors and the changes in the system side. An analysis of the effects of changes in system side is carried out on a simple two-bus system to gain an insight of the effect of system side changes on the estimated Thévenin equivalent parameters. The proposed method uses voltage and current magnitudes as well as active and reactive powers; thus avoiding the effect of phase angle drift of the PMU and the need to synchronize measurements at different instances to the same reference. Applying the method to the IEEE 30-bus test system has shown its ability to correctly determine the Thévenin equivalent even in the presence of measurement errors and/or system side changes.
Resumo:
The use of geothermal energy as a source for electricity and district heating has increased over recent decades. Dissolved As can be an important constituent of the geothermal fluids brought to the Earth's surface. Here the field application of laboratory measured adsorption coefficients of aqueous As species on basaltic glass surfaces is discussed. The mobility of As species in the basaltic aquifer in the Nesjavellir geothermal system, Iceland was modelled by the one-dimensional (1D) reactive transport model PHREEQC ver. 2, constrained by a long time series of field measurements with the chemical composition of geothermal effluent fluids, pH, Eh and, occasionally, Fe- and As-dissolved species measurements. Di-, tri- and tetrathioarsenic species (As(OH)S22-, AsS3H2-, AsS33- and As(SH)4-) were the dominant form of dissolved As in geothermal waters exiting the power plant (2.556μM total As) but converted to some extent to arsenite (H3AsO3) and arsenate HAsO42- oxyanions coinciding with rapid oxidation of S2- to S2O32- and finally to SO42- during surface runoff before feeding into a basaltic lava field with a total As concentration of 0.882μM following dilution with other surface waters. A continuous 25-a data set monitoring groundwater chemistry along a cross section of warm springs on the Lake Thingvallavatn shoreline allowed calibration of the 1D model. Furthermore, a series of ground water wells located in the basaltic lava field, provided access along the line of flow of the geothermal effluent waters towards the lake. The conservative ion Cl- moved through the basaltic lava field (4100m) in less than10a but As was retarded considerably due to surface reactions and has entered a groundwater well 850m down the flow path as arsenate in accordance to the prediction of the 1D model. The 1D model predicted a complete breakthrough of arsenate in the year 2100. In a reduced system arsenite should be retained for about 1ka. © 2011 Elsevier Ltd.
Resumo:
The reactive power management in distribution network with large penetration of distributed energy resources is an important task in future power systems. The control of reactive power allows the inclusion of more distributed recourses and a more efficient operation of distributed network. Currently, the reactive power is only controlled in large power plants and in high and very high voltage substations. In this paper, several reactive power control strategies considering a smart grids paradigm are proposed. In this context, the management of distributed energy resources and of the distribution network by an aggregator, namely Virtual Power Player (VPP), is proposed and implemented in a MAS simulation tool. The proposed methods have been computationally implemented and tested using a 32-bus distribution network with intensive use of distributed resources, mainly the distributed generation based on renewable resources. Results concerning the evaluation of the reactive power management algorithms are also presented and compared.
Resumo:
Le trouble du déficit de l’attention/hyperactivité (TDA/H) est un des troubles comportementaux le plus commun chez les enfants. TDAH a une étiologie complexe et des traitements efficaces. Le médicament le plus prescrit est le méthylphénidate, un psychostimulant qui bloque le transporteur de la dopamine et augmente la disponibilité de la dopamine dans la fente synaptique. Des études précliniques et cliniques suggèrent que le cortisol peut potentialiser les effets de la dopamine. Un dysfonctionnement du système hypothalamo-hypophyso-surrénalien (HHS) est associé avec plusieurs maladies psychiatriques comme la dépression, le trouble bipolaire, et l’anxiété. Nous avons fait l’hypothèse que le cortisol influence l’efficacité du traitement des symptômes du TDAH par le méthylphénidate. L’objectif de cette étude est de mesurer les niveaux de cortisol le matin au réveil et en réponse à une prise de sang dans un échantillon d’enfants diagnostiqué avec TDAH âgé de 8 ans. Le groupe était randomisé dans un protocole en chassé croisé et en double aveugle avec trois doses de méthylphénidate et un placebo pour une période de quatre semaines. Les enseignants et les parents ont répondu aux questionnaires SWAN et à une échelle d’évaluation des effets secondaires. Les résultats ont démontrés qu’un niveau de cortisol élevé au réveil prédit les sujets qui ne répondent pas au traitement du TDAH, si on se fie aux rapports des parents. En plus, la réactivité au stress élevé suggère un bénéfice additionnel d’une dose élevée de méthylphénidate selon les enseignants. Aussi, les parents rapportent une association entre la présence de troubles anxieux co-morbide avec le TDAH et une meilleure réponse à une dose élevée. Cette étude suggère qu’une forte réactivité de l’axe HHS améliore la réponse clinique à des doses élevées, mais qu’une élévation chronique du niveau de cortisol pourrait être un marqueur pour les non répondeurs. Les résultats de cette étude doivent être considérés comme préliminaires et nécessitent des tests plus approfondis des interactions possibles entre les médicaments utilisés pour traiter le TDAH et l’axe HHS.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)