1000 resultados para Acetonitrile Plus Methanol
Resumo:
A simple, rapid and sensitive analytical procedure for the measurement of imiquimod in skin samples after in vitro penetration studies has been developed and validated. In vitro penetration studies were carried out in Franz diffusion cells with porcine skin. Tape stripping technique was used to separate the stratum corneum (SC) from the viable epidermis and dermis. Imiquimod was extracted from skin samples using a 7:3 (v/v) methanol:acetate buffer (100 mm, pH 4.0) solution and ultrasonication. Imiquimod was analyzed by H-PLC using C(8) column and UV detection at 242 ran. The mobile phase used was acetonitrile:acetate buffer (pH 4.0, 100 mM):diethylamine (30:69.85:0.15, v/v) with flow rate 1 mL/min. Imiquimod eluted at 4.1 min and the running time was limited to 6.0 min. The procedure was linear across the following concentration ranges: 100-2500 ng/mL for both SC and tape-stripped skin and 20-800 ng/mL for receptor solution. Intra-day and inter-day accuracy and precision values were lower than 20% at the limit of quantitation. The recovery values ranged from 80 to 100%. The method is adequate to assay imiquimod from skin samples, enabling the determination of the cutaneous penetration profile of uniquimod by in vitro studies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
To determine the ability of probiotic lactobacilli to improve the treatment of vulvovaginal candidiasis (VVC) using a randomized, double-blind and placebo-controlled trial. Fifty-five women diagnosed with VVC by vaginal discharge positive for Candida spp. (according to culture method) associated with at least one of the symptoms (itching and burning vaginal feeling, dyspareunia and dysuria), were treated with single dose of fluconazole (150 mg) supplemented every morning for the following 4 weeks with two placebo or two probiotic capsules (containing Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14). At 4 weeks, the probiotic treated group showed significantly less vaginal discharge associated with any of the above mentioned symptoms (10.3%vs 34.6%; P = 0.03) and lower presence of yeast detected by culture (10.3%vs 38.5%; P = 0.014). This study has shown that probiotic lactobacilli can increase the effectiveness of an anti-fungal pharmaceutical agent in curing disease. This novel finding of probiotic lactobacilli augmenting the cure rate of yeast vaginitis, not only offers an alternative approach to a highly prevalent condition that adversely affects the quality of life of women around the world, but also raises the question of how this combination works.
Resumo:
Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.
Resumo:
Commercially available proton exchange membranes such as Nafion do not meet the requirements for high power density direct methanol fuel cells, partly due to their high methanol permeability. The aim of this work is to develop a new class of high-proton conductivity membranes, with thermal and mechanical stability similar to Nafion and reduced methanol permeability. Nanocomposite membranes were produced by the in-situ sol-gel synthesis of silicon dioxide particles in preformed Nafion membranes. Microstructural modification of Nafion membranes with silica nanoparticles was shown in this work to reduce methanol crossover from 7.48x10-6 cm2s^-1 for pure Nafion® to 2.86 x10-6 cm2s^-1 for nanocomposite nafion membranes (Methanol 50% (v/v) solution, 75 degrees C). Best results were achieved with a silica composition of 2.6% (w/w). We propose that silica inhibits the conduction of methanol through Nafion by blocking sites necessary for methanol diffusion through the polymer electrolyte membrane. Effects of surface chemistry, nanoparticle formation and interactions with Nafion matrix are further addressed.
Resumo:
In a randomized trial involving 71 postmenopausal osteoporotic women with vertebral compression fractures, radiocalcium absorption studies using the Ca-45 single isotope method (alpha) were performed at baseline and after 8 months of treatment with either continuous combined hormone replacement therapy (HRT, as piperazine estrone sulfate 0.625-0.937mg daily +/- medroxyprogesterone acetate 2.5 mg daily depending on uterine status) or HRT plus calcitriol 0.25 mu g twice daily. A calcium supplement of 600 mg nocte was given to only those women who had a daily calcium intake of less than 1 g per day at baseline, as assessed by recalled dietary intake. There was a significant decrease 0.74 (+/- 0.35 SD) to 0.58 (+/- 0.22), Delta alpha = -0.17 (+/- 0.26), p<0.0005] in alpha at 8 months compared with baseline in the HRT-treated group, but a significant increase [0.68 (+/- 0.31) to 0.84 (+/- 0.27), Delta alpha = +0.16 (+/- 0.30), p<0.003] in the HRT-plus-calcitriol treated patients, resulting in alpha being significantly higher after 8 months in the latter group than in the HRT-only group. Although 72% of the patients had been supplemented with calcium between the first and second studies, separate analyses revealed that the change in calcium intake had not affected the result. Further breakdown of the groups into baseline 'normal' absorbers (alpha greater than or equal to 0.55) and 'malabsorbers' (alpha <0.55) revealed that alpha decreased with HRT treatment only in the normal absorbers, and remained stable in the malabsorbers. Conversely, following HRT plus calcitriol treatment, alpha increased only in the malabsorbers, the normal absorbers in this group remaining unchanged. In conclusion, our data show that HRT, of the type and dose used in this study, did not produce an increase in absorption efficiency; it was in fact associated with a fall. increased absorption efficiency cannot be achieved unless calcitriol is used concurrently, and then only in patients with malabsorption. Calcitriol also had a significant effect in normal absorbers in that it prevented the decline in alpha seen with HRT alone, and thus should be considered in all patients with postmenopausal osteoporosis treated with HRT.
Resumo:
Hemichordates were traditionally allied to the chordates, but recent molecular analyses have suggested that hemichordates are a sister group to the echinoderms, a relationship that has important consequences for the interpretation of the evolution of deuterostome body plans. However, the molecular phylogenetic analyses to date have not provided robust support for the hemichordate + echinoderm clade. We use a maximum likelihood framework, including the parametric bootstrap, to reanalyze DNA data from complete mitochondrial genomes and nuclear 18S rRNA. This approach provides the first statistically significant support for the hemichordate + echinoderm clade from molecular data. This grouping implies that the ancestral deuterostome had features that included an adult with a pharynx and a dorsal nerve cord and an indirectly developing dipleurula-like larva.
Neuronal sodium-channel alpha 1-subunit mutations in generalized epilepsy with febrile seizures plus
Resumo:
Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by the presence of febrile and afebrile seizures. The first gene, GEFS1, was mapped to chromosome 19q and was identified as the sodium-channel beta1-subunit, SCN1B. A second locus on chromosome 2q, GEFS2, was recently identified as the sodium-channel alpha1-subunit, SCN1A. Single-stranded conformation analysis (SSCA) of SCN1A was performed in 53 unrelated index cases to estimate the frequency of mutations in patients with GEFS+. No mutations were found in 17 isolated cases of GEFS+. Three novel SCN1A mutations-D188V, V1353L, and I1656M-were found in 36 familial cases; of the remaining 33 families, 3 had mutations in SCN1B. On the basis of SSCA, the combined frequency of SCN1A and SCN1B mutations in familial cases of GEFS+ was found to be 17%.
Resumo:
Recent findings from studies of two families have shown that mutations in the GABA(A)-receptor gamma2 subunit are associated with generalized epilepsies and febrile seizures. Here we describe a family that has generalized epilepsy with febrile seizures plus (GEFS(+)), including an individual with severe myoclonic epilepsy of infancy, in whom a third GABA(A)-receptor gamma2-subunit mutation was found. This mutation lies in the intracellular loop between the third and fourth transmembrane domains of the GABA(A)-receptor gamma2 subunit and introduces a premature stop codon at Q351 in the mature protein. GABA sensitivity in Xenopus laevis oocytes expressing the mutant gamma2(Q351X) subunit is completely abolished, and fluorescent-microscopy studies have shown that receptors containing GFP-labeled gamma2(Q351X) protein are retained in the lumen of the endoplasmic reticulum. This finding reinforces the involvement of GABA(A) receptors in epilepsy.
Resumo:
Generalized epilepsy with febrile seizures plus (GEFS(+)) is an important childhood genetic epilepsy syndrome with heterogeneous phenotypes, including febrile seizures (FS) and generalized epilepsies of variable severity. Forty unrelated GEFS(+) and FS patients were screened for mutations in the sodium channel beta-subunits SCN1B and SCN2B, and the second GEFS(+) family with an SCN1B mutation is described here. The family had 19 affected individuals: 16 with typical GEFS(+) phenotypes and three with other epilepsy phenotypes. Site-specific mutation within SCN1B remains a rare cause of GEFS(+), and the authors found no evidence to implicate SCN2B in this syndrome.
Resumo:
We report a prospective, randomized, multi-center, open-label 2-year trial of 81 postmenopausal women aged 53-79 years with at least one minimal-trauma vertebral fracture (VF) and low (T-score below 2) lumbar bone mineral density (BMD). Group HRT received piperazine estrone sulfate (PES) 0.625 - 1.25 mg/d +/- medroxyprogesterone acetate (MPA) 2.5 - 5 mg/d,- group HRT/D received HRT plus calcitriol 0.25 mug bd. All with a baseline dietary calcium (Ca) of < I g/d received Ca carbonate 0.6 g nocte. Final data were on 66 - 70 patients. On HRT/D, significant (P < 0.001) BNID increases from baseline by DXA were at total body - head, trochanter, Ward's, total hip, inter-trochanter and femoral shaft (% group mean Delta 4.2, 6.1, 9.3. 3.7. 3.3 and 3.3%, respectively). On HRT, at these significant Deltas were restricted to the trochanter and sites. si Wards. Significant advantages of HRT/D over HRT were in BMD of total body (- head), total hip and trochanter (all P = 0.01). The differences in mean Delta at these sites were 1.3, 2.6 and 3.9%. At the following, both groups Improved significantly -lumbar spine (AP and lateral), forearm shaft and ultradistal tibia/fibula. The weightbearing, site - specific benefits of the combination associated with significant suppression of parathyroid hormone-suggest a beneficial effect on cortical bone. Suppression of bone turnover was significantly greater on HRT/D (serum osteocalcin P = 0.024 and urinary hydroxyproline/creatinine ratio P = 0.035). There was no significant difference in the number of patients who developed fresh VFs during the trial (HRT 8/36, 22%; HRT/D 4/34, 12% - intention to treat); likewise in the number who developed incident nonvertebral fractures. This Is the first study comparing the 2 treatments in a fracture population. The results indicate a significant benefit of calcitriol combined with HRT on total body BMD and on BNID at the hip, the major site of osteoporotic fracture.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The behavior of Pt/C and Pt-RuO(x)/C electrodes subjected to a larger number of potential scans and constant potential for prolonged time periods was investigated in the absence and presence of methanol. The structural changes were analyzed on the basis of the modifications observed in the X-ray diffraction pattern of the catalysts. Carbon monoxide stripping experiments were performed before and after the potential scans, thus enabling analysis of the behavior of the electrochemically active surface area. The resulting solutions were examined by inductively coupled plasma mass spectrometry (ICP-MS). There was reduction in the electrochemically active surface area, as well as increase in crystallite size and dissolution of catalyst components after the potential scan tests. Catalyst degradation was more pronounced in the presence of methanol, and cyclic potential conditions accelerate the degradation mechanisms. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.