978 resultados para Acceleration (Physics)
Resumo:
This paper proposes a different experimental setup compared with the traditional ones, in order to determine the acceleration of gravity, which is carried out by using a fluid at a constant rotation. A computerized rotational system-by using a data acquisition system with specific software, a power amplifier and a rotary motion sensor-is employed in order to evaluate the angular velocity and g. An equation to determine g is inferred from fluid mechanics. For this purpose, the fluid's parabolic shape inside a cylindrical receptacle is considered using a rotational movement.
Resumo:
By incorporating the holographic principle in a time-depending Lambda-term cosmology, new physical bounds on the arbitrary parameters of the model can be obtained. Considering then the dark energy as a purely geometric entity, for which no equation of state has to be introduced, it is shown that the resulting range of allowed values for the parameters may explain both the coincidence problem and the universe accelerated expansion, without resorting to any kind of additional structures. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The unlimited energy growth ( Fermi acceleration) of a classical particle moving in a billiard with a parameter-dependent boundary oscillating in time is numerically studied. The shape of the boundary is controlled by a parameter and the billiard can change from a focusing one to a billiard with dispersing pieces of the boundary. The complete and simplified versions of the model are considered in the investigation of the conjecture that Fermi acceleration will appear in the time-dependent case when the dynamics is chaotic for the static boundary. Although this conjecture holds for the simplified version, we have not found evidence of Fermi acceleration for the complete model with a breathing boundary. When the breathing symmetry is broken, Fermi acceleration appears in the complete model.
Resumo:
A simplified version of a time-dependent annular billiard is studied. The dynamics is described using nonlinear maps and we consider two different configurations for the billiard, namely (i) concentric and (ii) eccentric cases. For the concentric case and for a null angular momentum, we confirm that the results for the Fermi-Ulam model are recovered and the particle does not experience the phenomenon of Fermi acceleration. However, on the eccentric case the particle demonstrates unlimited energy gain and Fermi acceleration is therefore observed.
Resumo:
The phenomenon of Fermi acceleration is addressed for a dissipative bouncing ball model with external stochastic perturbation. It is shown that the introduction of energy dissipation (inelastic collisions of the particle with the moving wall) is a sufficient condition to break down the process of Fermi acceleration. The phase transition from bounded to unbounded energy growth in the limit of vanishing dissipation is characterized.
Resumo:
Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties of a bouncing ball model under the presence of an external force modelled by two nonlinear terms are studied. The description of the model is made by the use of a two-dimensional nonlinear measure-preserving map on the variable's velocity of the particle and time. We show that raising the straight of a control parameter which controls one of the nonlinearities, the positive Lyapunov exponent decreases in the average and suffers abrupt changes. We also show that for a specific range of control parameters, the model exhibits the phenomenon of Fermi acceleration. The explanation of both behaviours is given in terms of the shape of the external force and due to a discontinuity of the moving wall's velocity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work deals with the design of the Institute of Physics of the University of São Paulo (IFUSP) main racetrack microtron accelerator end magnets. This is the last stage of acceleration, comprised of an accelerating section (1.04 m) and two end magnets (0.1585 T), in which a 5.10 MeV beam, produced by a racetrack microtron booster has its energy raised up to 31.15 MeV after 28 accelerations. POISSON code was used to give the final configuration that includes auxiliary pole pieces (clamps) and auxiliary homogenizing gaps. The clamps create a reverse fringe field region and avoid the vertical defocusing and the horizontal displacement of the beam produced by extended fringe fields; PTRACE code was used to perform the trajectory calculations in the fringe field region. The auxiliary homogenizing gaps improve the field uniformity as they create a magnetic shower that provides uniformity of ±0.3%, before the introduction of the correcting coils that will be attached to the pole faces. This method of correction, used in the IFUSP racetrack microtron booster magnets, enabled uniformity of ±0.001% in an average field of 0.1 T and will also be employed for these end magnets. © 1999 The American Physical Society.
Resumo:
In order that confinement should survive, light quarks inside hadrons have a very high acceleration and will feel a thermal bath with an Unruh temperature near 137 MeV. We show that this temperature is consistent with the experimentally observed departure from the Gottfried sum rule for the difference of the proton and neutron structure functions in deep inelastic electron scattering.
Resumo:
Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.
Resumo:
The behavior of the average energy for an ensemble of non-interacting particles is studied using scaling arguments in a dissipative time-dependent stadium-like billiard. The dynamics of the system is described by a four dimensional nonlinear mapping. The dissipation is introduced via inelastic collisions between the particles and the moving boundary. For different combinations of initial velocities and damping coefficients, the long time dynamics of the particles leads them to reach different states of final energy and to visit different attractors, which change as the dissipation is varied. The decay of the average energy of the particles, which is observed for a large range of restitution coefficients and different initial velocities, is described using scaling arguments. Since this system exhibits unlimited energy growth in the absence of dissipation, our results for the dissipative case give support to the principle that Fermi acceleration seems not to be a robust phenomenon. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699465]
Resumo:
In this Letter we analyze the energy distribution evolution of test particles injected in three dimensional (3D) magnetohydrodynamic (MHD) simulations of different magnetic reconnection configurations. When considering a single Sweet-Parker topology, the particles accelerate predominantly through a first-order Fermi process, as predicted in [3] and demonstrated numerically in [8]. When turbulence is included within the current sheet, the acceleration rate is highly enhanced, because reconnection becomes fast and independent of resistivity [4,11] and allows the formation of a thick volume filled with multiple simultaneously reconnecting magnetic fluxes. Charged particles trapped within this volume suffer several head-on scatterings with the contracting magnetic fluctuations, which significantly increase the acceleration rate and results in a first-order Fermi process. For comparison, we also tested acceleration in MHD turbulence, where particles suffer collisions with approaching and receding magnetic irregularities, resulting in a reduced acceleration rate. We argue that the dominant acceleration mechanism approaches a second order Fermi process in this case.