981 resultados para Acartia clausi, egg production per female as carbon
Resumo:
Keel fractures in the laying hen are the most critical animal welfare issue facing the egg production industry, particularly with the increased use of extensive systems in response to the 2012 EU directive banning conventional battery cages. The current study is aimed at assessing the effects of 2 omega-3 (n3) enhanced diets on bone health, production endpoints, and behavior in free-range laying hens. Data was collected from 2 experiments over 2 laying cycles, each of which compared a (n3) supplemented diet with a control diet. Experiment 1 employed a diet supplemented with a 60:40 fish oil-linseed mixture (n3:n6 to 1.35) compared with a control diet (n3:n6 to 0.11), whereas the n3 diet in Experiment 2 was supplemented with a 40:60 fish oil-linseed (n3:n6 to 0.77) compared to the control diet (n3:n6 to 0.11). The n3 enhanced diet of Experiment 1 had a higher n3:n6 ratio, and a greater proportion of n3 in the long chain (C20/22) form (0.41 LC:SC) than that of Experiment 2 (0.12 LC:SC). Although dietary treatment was successful in reducing the frequency of fractures by approximately 27% in Experiment 2, data from Experiment 1 indicated the diet actually induced a greater likelihood of fracture (odds ratio: 1.2) and had substantial production detriment. Reduced keel breakage during Experiment 2 could be related to changes in bone health as n3-supplemented birds demonstrated greater load at failure of the keel, and tibiae and humeri that were more flexible. These results support previous findings that n3-supplemented diets can reduce fracture likely by increasing bone strength, and that this can be achieved without detriment to production. However, our findings suggest diets with excessive quantities of n3, or very high levels of C20/22, may experience health and production detriments. Further research is needed to optimize the quantity and type of n3 in terms of bone health and production variables and investigate the potential associated mechanisms.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph. D.) - Cornell Univ., 1922.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Benthic marine invertebrates may form metapopulations connected via propagule dispersal. Conservation efforts often target potential source coastlines to indirectly benefit areas depending on allochthonous offspring production. Besides population density, adult size structure, sex ratio, brooding frequency and the proportion of breeding individuals may significantly influence the reproductive output of benthic populations, but these effects have seldom been tested. We used rocky shore crabs to assess the spatial variability of such parameters at relevant scales for conservation purposes and to test their consistency over 2 consecutive years; we then used the data to address whether bottom-up processes or biological interactions might explain the patterns observed. We decomposed egg production rates into their components for the 2 most abundant brachyuran species inhabiting the intertidal rocky habitat. Adult density and brooding frequency varied consistently among shores for both species and largely explained the overall spatial trends of egg production. Temporally consistent patterns also included among-shore differences in the size of ovigerous females of the grapsid Pachygrapsus transversus and between-bay differences in the fecundity of the spider crab Epialtus brasiliensis. Sex ratio was remarkably constant in both. We found no positive or negative correlations between adult density and brooding frequency to support either the existence of a component Allee effect (lack of mate encounters) or an effect of intra-specific competition. Likewise, shore-specific potential growth in P. transversus does not negatively correlate with frequency of ovigerous individuals, as would be expected under a critical balance between these 2 processes. The patterns observed suggest that bottom-up drivers may best explain spatial trends in the reproductive output of these species.