948 resultados para Absorption coefficients
Resumo:
The absorption cross section of Reissner-Nordstroumlm black holes for the electromagnetic field is computed numerically for arbitrary frequencies, taking into account the coupling of the electromagnetic and gravitational perturbations. We also compute the conversion coefficients of electromagnetic to gravitational waves by scattering from a Reissner-Nordstroumlm black hole.
Resumo:
This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (K-p') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and K-p' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
Based on the hypothesis that limited receptor solubility of lipophilic compounds may result in lower observed permeability parameters, the aim of this study was to determine the in vitro human epidermal permeability coefficients and membrane retention of a series of aliphatic alcohols (C1-C10, log p -0.72 to 4.06) using two different receptor solutions (water and 4% bovine serum albumin in phosphate-buffered saline). Aqueous solutions of radiolabeled alcohols were dosed into the stratum corneum side of membranes mounted in side-by-side glass diffusion cells. Appearance of alcohol in the receptor compartment filled with either of the two solutions was monitored over a 7 h period when both stratum corneum (assessed by tape stripping) and the remaining epidermis levels of radioactivity were determined. In a separate study the degree of binding of alcohols to 4% bovine serum albumin was determined. The data showed increased receptor phase solubility in the bovine serum albumin solution and higher permeability coefficients for the more lipophilic alcohols in the series. No changes were seen in the partitioning of the alcohols from the vehicle into either the stratum corneum or tape-stripped epidermis with the two receptor phases; however, a decrease in the amount of the more lipophilic alcohols partitioning into the water receptor phase from the tape-stripped epidermis was observed. We conclude that bovine serum albumin receptor phase allows better estimation of real permeability parameters for lipophilic compounds due to its increased solubility capacity and we question whether permeability parameters for lipophilic solutes from older data sets based on aqueous receptor phases are completely reliable.
Resumo:
This work describes a method to determine Cu at wide range concentrations in a single run without need of further dilutions employing high-resolution continuum source flame atomic absorption spectrometry. Different atomic lines for Cu at 324.754 nm, 327.396 nm, 222.570 nm, 249.215 nm and 224.426 nm were evaluated and main figures of merit established. Absorbance measurements at 324.754 nm, 249.215 nm and 224.426 nm allows the determination of Cu in the 0.07 - 5.0 mg L-1, 5.0 - 100 mg L-1 and 100 - 800 mg L-1 concentration intervals respectively with linear correlation coefficients better than 0.998. Limits of detection were 21 µg L-1, 310 µg L-1 and 1400 µg L-1 for 324.754 nm, 249.215 nm and 224.426 nm, respectively and relative standard deviations (n = 12) were £ 2.7%. The proposed method was applied to water samples spiked with Cu and the results were in agreement at a 95% of confidence level (paired t-test) with those obtained by line-source flame atomic absorption spectrometry.
Resumo:
IntraCavity Laser Absorption Spectroscopy (ICLAS) is a high-resolution, high sensitivity spectroscopic method capable of measuring line positions, linewidths, lineshapes, and absolute line intensities with a sensitivity that far exceeds that of a traditional multiple pass absorption cell or Fourier Transform spectrometer. From the fundamental knowledge obtained through these measurements, information about the underlying spectroscopy, dynamics, and kinetics of the species interrogated can be derived. The construction of an ICLA Spectrometer will be detailed, and the measurements utilizing ICLAS will be discussed, as well as the theory of operation and modifications of the experimental apparatus. Results include: i) Line intensities and collision-broadening coefficients of the A band of oxygen and previously unobserved, high J, rotational transitions of the A band, hot-band transitions, and transitions of isotopically substituted species. ii) High-resolution (0.013 cm-1) spectra of the second overtone of the OH stretch of trans-nitrous acid recorded between 10,230 and 10,350 cm-1. The spectra were analyzed to yield a complete set of rotational parameters and an absolute band intensity, and two groups of anharmonic perturbations were observed and analyzed. These findings are discussed in the context of the contribution of overtone-mediated processes to OH radical production in the lower atmosphere.
Resumo:
The permeability of the lung is critical in determining the disposition of inhaled drugs and the respiratory epithelium provides the main physical barrier to drug absorption. The 16HBE14o- human bronchial epithelial cell line has been developed recently as a model of the airway epithelium. In this study, the transport of 10 low molecular weight compounds was measured in the 16HBE14o- cell layers, with apical to basolateral (absorptive) apparent permeability coefficients (P(app)) ranging from 0.4 x 10(-6)cms(-1) for Tyr-D-Arg-Phe-Phe-NH(2) to 25.2x10(-6)cms(-1) for metoprolol. Permeability in 16HBE14o- cells was found to correlate with previously reported P(app) in Caco-2 cells and absorption rates in the isolated perfused rat lung (k(a,lung)) and the rat lung in vivo (k(a,in vivo)). Log linear relationships were established between P(app) in 16HBE14o- cells and P(app) in Caco-2 cells (r(2)=0.82), k(a,lung) (r(2)=0.78) and k(a,in vivo) (r(2)=0.68). The findings suggest that permeability in 16HBE14o- cells may be useful to predict the permeability of compounds in the lung, although no advantage of using the organ-specific cell line 16HBE14o- compared to Caco-2 cells was found in this study.
Resumo:
The performance of modular home made capillary electrophoresis equipment with spectrophotometric detection, at a visible region by means of a miniaturized linear charge coupled device, was evaluated for the determination of four food dyes. This system presents a simple but efficient home made cell detection scheme. A computer program that converts the spectral data after each run into the electropherograms was developed to evaluate the analytical parameters. The dyes selected for analytical evaluation of the system were Brilliant Blue FCF, Fast Green FCF, Sunset Yellow FCF, and Amaranth. Separation was carried out in a 29cm length and 75 mu m I.D fused silica capillary, using 10mmolL-1 borate buffer at pH 9, with separation voltage of 7.5kV. The detection limits for the dyes were between 0.3 and 1.5mgL-1 and the method presented adequate linearity over the ranges studied, with correlation coefficients greater than 0.99. The method was applied for determination and quantification of these dyes in fruit juices and candies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different kinds of modifiers and coatings on the integrated platform of transversely heated graphite atomizer (THGA) have been tested for the simultaneous determination of two group of elements: the first, the more volatile, formed by arsenic, bismuth, lead, antimony and selenium; the second, the less volatile, formed by cobalt, chromium, cupper, iron and manganese in milk by electrothermal atomic absorption spectrometry. Different Rh-modifiers were studied, such as Rh-coated platforms (Rh), carbide plus rhodium coated platforms (W-Rh, Zr-Rh), carbide-coated platforms (W and Zr) with co-injection of RhCl3, solutions and uncoated platforms with injection of solutions of Pd(NO3)(2), Mg(NO3)(2), and RhCl3. Milk samples were diluted 1:10 in 1.0% HNO3 and injected into the tube. The mass of modifier deposited and co-injected in the tube and the use of end capped tubes were also evaluated in order to improve the electrothermal behavior of analytes. Integrated platform pretreated with W plus co-injection RhCl3 for first group and pretreated with W-Rh for second group were elected. For 20 mu L injected samples the analytical curves in the 5.0-20.0 mu g L-1 concentration range have good linear correlation coefficients (r > 0.998). Relative standard deviations (n = 12) are < 6% and the calculated characteristic masses are between 5 pg and 62 pg.
Resumo:
Different modifiers (IrCl3, W+IrCl3, Zr+IrCl 3) and coatings (Ir, W-Ir, Zr-Ir) were evaluated for the simultaneous determination of arsenic, bismuth, lead, antimony, and selenium in milk by graphite furnace atomic absorption spectrometry using the 'end-capped' transversely heated graphite atomizer (THGA). Integrated platform, pretreated with Zr-Ir as permanent modifier, was elected as the optimum surface modification resulting in up to 250 firings. Two additional recoatings were possible without significant changes in the analytical performance (750 firings). For 20 μL of matrix-matched standard solutions using diluted (1:10) milk samples, typical correlation coefficients between integrated absorbance and analyte concentration (5.00-20.0 μg/L) was always better than 0.999. The levels of the analytes found in commercial milk samples were lower than the limit of detection: 2.9 μg/L As, 2.9 μg/L Bi, 1.8 μg/L Pb, 1.9 μg/L Sb, and 2.5 μg/L Se. Recoveries were found within the following intervals: 88-114% for As, 89-118% for Bi, 89-113% for Pb, 91-115% for Sb, and 92-115% for Se. The relative standard deviations (n = 12) were ≤2% (As), ≤ 5% (Bi), ≤ 1.4% (Pb), ≤ 3% (Sb), and 5% (Se), and the respective calculated characteristic masses were 54 pg As, 55 pg Bi, 40 pg Pb, 56 pg Sb, and 51 pg Se.
Resumo:
Propolis is a natural product collected by honeybees and has a large range of pharmacological activity, including antimicrobial, antitumoral, antioxidant and anti-inflammatory. Its use as a popular medicine is increasing all over the world, creating a need for quality control of the commercial products. In this study the levels of calcium and magnesium in commercial hydroalcoholic propolis extracts from varies states of Brazil were determined by atomic absorption flame spectrophotometry and different values were obtained for northern and southern states. This study can be extended to the analysis of metals that are harmful to health. The results showed that the calibration curves were linear over a wide concentration range (0.5-4.0 μg.mL -1 for calcium and 0.05-0.4 μg.mL -1 for magnesium) with good correlation coefficients (0.999 and 0.988, respectively). Good analytical recovery (94%) was obtained. The proposed method showed adequate precision and relative standard deviation lower than 2 %. The method is accurate and precise as well as having advantages such as simplicity and speed.