610 resultados para AZ91D MAGNESIUM ALLOY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factors that influence alloying zirconium to magnesium with a Mg-33.3Zr master alloy and the subsequent grain refinement are discussed based on a large number of experiments conducted at the laboratory scale (up to 30 kg of melt). It is shown that the zirconium particles released from the Zirmax(R) master alloy must be brought into thorough contact with the melt by an appropriate stirring process in order to attain a good dissolution of zirconium. The influence of alloying temperature on the recovery of zirconium was found to be negligible in the range from 680 to 780 degreesC. An ideal zirconium alloying process should end up with both high soluble and high total zirconium in the melt in order to achieve the best grain refinement in the final alloy. The distribution of zirconium in the final alloy microstructure is inhomogeneous and almost all of the zirconium in solution is concentrated in zirconium-rich cores in the microstructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le attività di ricerca svolte nel corso del dottorato di ricerca, sono state focalizzate principalmente sullo studio dell’evoluzione microstrutturale, delle proprietà meccaniche e tribologiche di una particolare lega da fonderia, EV31A, con alte percentuali di terre rare (Nd e Gd > 4% in peso). Le analisi microstrutturali sono state eseguite tramite microscopia ottica (OM), elettronica in scansione (SEM) ed elettronica in trasmissione (TEM), mentre le proprietà meccaniche sono state determinate attraverso prove di trazione e prove di fatica a flessione rotante. Al fine di incrementare le proprietà tribologiche delle leghe di magnesio è stata valutata l’efficacia del trattamento PEO sia sulla lega EV31A, sia sulle più comuni leghe AZ80 e AZ91D, effettuando test tribologici in modalità pattino su cilindro (Block on Ring). Infine è stato condotto uno studio sull’efficacia del trattamento di fusione superficiale laser (LSM), analizzandone gli effetti sia sull’evoluzione microstrutturale, sia sulle proprietà meccaniche e sulla resistenza a corrosione. Le attività svolte nel corso del dottorato di ricerca sono state svolte presso il Dipartimento di Ingegneria Industriale DIN della Scuola di Ingegneria e Architettura dell’Università di Bologna sotto la supervisione della Prof. ssa Lorella Ceschini.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine if magnesium deficiency aggravates the effects of a high-fat diet in growing rats in terms of obesity, lipid profile and insulin resistance. The study population comprised 48 newly weaned male Wistar Hannover rats distributed into four groups according to diet, namely, control group (CT; n = 8), control diet provided ad libitum; pair-feeding control group (PF; n = 16), control diet but in the same controlled amount as animals that received high-fat diets; high-fat diet group (HF; n = 12), and magnesium-deficient high-fat diet group (HFMg(-); n = 12). The parameters investigated were adiposity index, lipid profile, magnesium status, insulin sensitivity and the phosphorylation of proteins involved in the insulin-signaling pathway, i.e. insulin receptor β-subunit, insulin receptor substrate 1 and protein kinase B. The HF and HFMg(-) groups were similar regarding gain in body mass, adiposity index and lipid profile, but were significantly different from the PF group. The HFMg(-) group exhibited alterations in magnesium homeostasis as revealed by the reduction in urinary and bone concentrations of the mineral. No inter-group differences were observed regarding glucose homeostasis. Protein phosphorylation in the insulin-signaling pathway was significantly reduced in the high-fat groups compared with the control groups, demonstrating that the intake of fat-rich diets increased insulin resistance, a syndrome that was aggravated by magnesium deficiency. Under the experimental conditions tested, the intake of a magnesium-deficient high-fat diet led to alterations in the insulin-signaling pathway and, consequently, increased insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the corrosion kinetics and surface topography of Ti-6Al-4V alloy exposed to mouthwash solutions (0.12% chlorhexidine digluconate, 0.053% cetylpyridinium chloride and 3% hydrogen peroxide) compared to artificial saliva (pH6.5) (control). Twenty Ti-6Al-4V alloy disks were used and divided into 4 groups (n=5). For the electrochemical assay, standard tests as open circuit potential and electrochemical impedance spectroscopy (EIS) were applied at baseline, 7 and 14days after immersion in the solutions. Scanning electron microscopy, atomic force microscopy and profilometry (average roughness - Ra) were used for surface characterization. Total weight loss of disks was calculated. Data were analyzed by ANOVA and Bonferroni's test (α=0.05). Hydrogen peroxide generated the lowest polarization resistance (Rp) values for all periods (P<0.05). For the capacitance (Cdl), similar results were observed among groups at baseline (P=0.098). For the 7 and 14-day periods, hydrogen peroxide promoted the highest Cdl values (P<0.0001). Hydrogen peroxide promoted expressive superficial changes and greater Ra values than the others (P<0.0001). It could be concluded that solutions containing cetylpyridinium chloride and chlorhexidine digluconate might be the mouthwashes of choice during the post-operatory period of dental implants. However, hydrogen peroxide is counter-indicated in these situations. Further studies evaluating the dynamics of these solutions (tribocorrosion) and immersing the disks in daily cycles (two or three times a day) to mimic a clinical situation closest to the application of mouthwashes in the oral cavity are warranted to prove our results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increase in life expectancy, biomaterials have become an increasingly important focus of research because they are used to replace parts and functions of the human body, thus contributing to improved quality of life. In the development of new biomaterials, the Ti-15Mo alloy is particularly significant. In this study, the Ti-15Mo alloy was produced using an arc-melting furnace and then characterized by density, X-ray diffraction, optical microscopy, hardness and dynamic elasticity modulus measurements, and cytotoxicity tests. The microstructure was obtained with β predominance. Microhardness, elasticity modulus, and cytotoxicity testing results showed that this material has great potential for use as biomaterial, mainly in orthopedic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the role of different metal centers (magnesium, zinc and copper) on the enhancement of the hydrophilic character of metallochlorophylls, was evaluated. The solvatochromism as well as the aggregation process for these compounds in water/ethanol mixtures at different volume ratios were evaluated using Fluorescence, and Resonant Light Scattering (RLS) measurements, aiming to characterize the behavior of these compounds. Independently on the studied metallochlorophyll, the presence of at least 60% of water results in a considerable increase in the fluorescence emission, probably a direct consequence of a lower aggregation of these compounds, which is confirmed by the results from RLS measurements. Additionally, the results suggest that magnesium and zinc chlorophyll should be promising phototherapeutic agents for Photodynamic Therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that striation spacing may be related to the crack growth rate, da/dN, through Paris equation, as well as the maximum and minimum loads under service loading conditions. These loads define the load ratio, R, and are considered impossible to be evaluated from the inter-spacing striations analysis. In this way, this study discusses the methodology proposed by Furukawa to evaluate the maximum and minimum loads based on the experimental fact that the relative height of a striation, H, and the striation spacing, s, are strongly influenced by the load ratio, R. Fatigue tests in C(T) specimens were conducted on SAE 7475-T7351 Al alloy plates at room temperature and the results showed a straightforward correlation between the parameters H, s, and R. Measurements of striation height, H, were performed using scanning electron microscopy and field emission gun (FEG) after sectioning the specimen at a large inclined angle to amplify the height of the striations. The results showed that for increasing R the values of H/s tend to increase. Striation height, striation spacing, and load ratio correlations were obtained, which allows one to estimate service loadings from fatigue fracture surface survey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of internal stresses in oxide scales growing on polycrystalline Fe(3)Al alloy in atmospheric air at 700 degrees C was determined using in situ energy-dispersive synchrotron X-ray diffraction. Ex situ texture analyses were performed after 5 h of oxidation at 700 degrees C. Under these conditions, the oxide-scale thickness, as determined by X-ray photoelectron spectroscopy, lies between 80 and 100 nm. The main phase present in the oxide scales is alpha-Al(2)O(3), with minor quantities of metastable theta-Al(2)O(3) detected in the first minutes of oxidation, as well as alpha-Fe(2)O(3). alpha-Al(2)O(3) grows with a weak (0001) fiber texture in the normal direction. During the initial stages of oxidation the scale develops, increasing levels of compressive stresses which later evolve to a steady state condition situated around -300 MPa. (C) 2010 International Centre for Diffraction Data. [DOI: 10.1154/1.3402764]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.