957 resultados para AXIAL DIVERGENCE
Resumo:
Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.
Resumo:
The renormalization properties of gauge-invariant composite operators that vanish when the classical equations of motion are used (class II^a operators) and which lead to diagrams where the Adler-Bell-Jackiw anomaly occurs are discussed. It is shown that gauge-invariant operators of this kind do need, in general, nonvanishing gauge-invariant (class I) counterterms.
Resumo:
Background: In insects, like in most invertebrates, olfaction is the principal sensory modality, which provides animals with essential information for survival and reproduction. Odorant receptors are involved in this response, mediating interactions between an individual and its environment, as well as between individuals of the same or different species. The adaptive importance of odorant receptors renders them good candidates for having their variation shaped by natural selection. Methodology/Principal Findings: We analyzed nucleotide variation in a subset of eight Or genes located on the 3L chromosomal arm of Drosophila melanogaster in a derived population of this species and also in a population of Drosophila pseudoobscura. Some heterogeneity in the silent polymorphism to divergence ratio was detected in the D. melanogaster/D. simulans comparison, with a single gene (Or67b) contributing ~37% to the test statistic. However, no other signals of a very recent selective event were detected at this gene. In contrast, at the speciation timescale, the MK test uncovered the footprint of positive selection driving the evolution of two of the encoded proteins in both D. melanogaster ¿OR65c and OR67a ¿and D. pseudoobscura ¿OR65b1 and OR67c. Conclusions: The powerful polymorphism/divergence approach provided evidence for adaptive evolution at a rather high proportion of the Or genes studied after relatively recent speciation events. It did not provide, however, clear evidence for very recent selective events in either D. melanogaster or D. pseudoobscura.
Resumo:
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
Resumo:
We present state-of-the-art dual-wavelength digital holographic microscopy (DHM) measurement on a calibrated 8.9 nm high chromium thin step sample and demonstrate sub-nanometer axial accuracy. By using a modified DHM reference calibrated hologram (RCH) reconstruction method, a temporal averaging procedure and a specific dual-wavelength DHM arrangement, it is shown that specimen topography can be measured with an accuracy, defined as the axial standard deviation, reduced to at least 0.9 nm. Indeed for the first time to the best of our knowledge, it is reported that averaging each of the two wavefronts recorded with real-time dual-wavelength DHM can provide up to 30% spatial noise reduction for the given configuration. Moreover, the presented experimental configuration achieves a temporal stability below 0.8 nm, thus paving the way to Angström range for dual-wavelength DHM.
Integrative analyses of speciation and divergence in Psammodromus hispanicus (Squamata: Lacertidae).
Resumo:
BackgroundGenetic, phenotypic and ecological divergence within a lineage is the result of past and ongoing evolutionary processes, which lead ultimately to diversification and speciation. Integrative analyses allow linking diversification to geological, climatic, and ecological events, and thus disentangling the relative importance of different evolutionary drivers in generating and maintaining current species richness.ResultsHere, we use phylogenetic, phenotypic, geographic, and environmental data to investigate diversification in the Spanish sand racer (Psammodromus hispanicus). Phylogenetic, molecular clock dating, and phenotypic analyses show that P. hispanicus consists of three lineages. One lineage from Western Spain diverged 8.3 (2.9-14.7) Mya from the ancestor of Psammodromus hispanicus edwardsianus and P. hispanicus hispanicus Central lineage. The latter diverged 4.8 (1.5-8.7) Mya. Molecular clock dating, together with population genetic analyses, indicate that the three lineages experienced northward range expansions from southern Iberian refugia during Pleistocene glacial periods. Ecological niche modelling shows that suitable habitat of the Western lineage and P. h. edwardsianus overlap over vast areas, but that a barrier may hinder dispersal and genetic mixing of populations of both lineages. P. h. hispanicus Central lineage inhabits an ecological niche that overlaps marginally with the other two lineages.ConclusionsOur results provide evidence for divergence in allopatry and niche conservatism between the Western lineage and the ancestor of P. h. edwardsianus and P. h. hispanicus Central lineage, whereas they suggest that niche divergence is involved in the origin of the latter two lineages. Both processes were temporally separated and may be responsible for the here documented genetic and phenotypic diversity of P. hispanicus. The temporal pattern is in line with those proposed for other animal lineages. It suggests that geographic isolation and vicariance played an important role in the early diversification of the group, and that lineage diversification was further amplified through ecological divergence.
Resumo:
We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae (Glis and Glirulus) and Leithiinae (Dryomys, Eliomys and Muscardinus) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus, and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiuros, Glis, Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicas is suggested to be a relict of this ancient diversification during the warm period.
Resumo:
BACKGROUND: Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. RESULTS: Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. CONCLUSION: Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events. Similarities in hydrocarbon profiles between species are correlated with interspecific mating propensities, suggesting a role for cuticular hydrocarbon profiles in mate choice and speciation in the genus Timema.
Resumo:
Axial spondylometaphyseal dysplasia (SMD) (OMIM 602271) is an uncommon skeletal dysplasia characterized by metaphyseal changes of truncal-juxtatruncal bones, including the proximal femora, and retinal abnormalities. The disorder has not attracted much attention since initially reported; however, it has been included in the nosology of genetic skeletal disorders [Warman et al. (2011); Am J Med Genet Part A 155A:943-968] in part because of a recent publication of two additional cases [Isidor et al. (2010); Am J Med Genet Part A 152A:1550-1554]. We report here on the clinical and radiological manifestations in seven affected individuals from five families (three sporadic cases and two familial cases). Based on our observations and Isidor's report, the clinical and radiological hallmarks of axial SMD can be defined: The main clinical findings are postnatal growth failure, rhizomelic short stature in early childhood evolving into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and function rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on fundoscopic examination and cone-rod dystrophy on electroretinogram. The radiological hallmarks include short ribs with flared, cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. Equally affected sibling pairs of opposite gender and parental consanguinity are strongly suggestive of autosomal recessive inheritance. © 2011 Wiley-Liss, Inc.
Resumo:
The objective of this work was to determine the genetic differences among eight Brazilian populations of the tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), from the states of Espírito Santo (Santa Tereza), Goiás (Goianápolis), Minas Gerais (Uberlândia and Viçosa), Pernambuco (Camocim de São Félix), Rio de Janeiro (São João da Barra) and São Paulo (Paulínia and Sumaré), using the amplified fragment length polymorphism (AFLP) technique. Fifteen combinations of EcoRI and MseI primers were used to assess divergence among populations. The data were analyzed using unweighted pair-group method, based on arithmetic averages (UPGMA) bootstrap analysis and principal coordinate analysis. Using a multilocus approach, these populations were divided in two groups, based on genetic fingerprints. Populations from Goianápolis, Santa Tereza, and Viçosa formed one group. Populations from Camocim de São Félix, Paulínia, São João da Barra, Sumaré, and Uberlândia fitted in the second group. These results were congruent with differences in susceptibility of this insect to insecticides, previously identified by other authors.
Resumo:
Abstract
Resumo:
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.
Resumo:
BACKGROUND AND AIMS: Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QST-FST comparison). METHODS: A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h(2)) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an 'animal model' fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance. KEY RESULTS: Serotiny showed a significant narrow-sense heritability (h(2)) of 0·20 (credible interval 0·09-0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites. CONCLUSIONS: Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits.
Resumo:
The objective of this work was to estimate the genetic variability and divergence among 22 superior rubber tree (Hevea sp.) genotypes of the IAC 400 series. Univariate and multivariate analyses were performed using eight quantitative traits (descriptors), including yield. In the univariate analyses, the estimated parameters were: genetic and environmental variances; genetic and environmental coefficients of variation; and the variation index. The Mahalanobis generalized distance, the Tocher agglomerative method and canonical variables were used for the multivariate analyses. In the univariate analyses, variability was verified among the genotypes for all the variables evaluated. The Tocher method grouped the genotypes into 11 clusters of dissimilarity. The first four canonical variables explained 87.93% of the cumulative variation. The highest genetic variability was found in rubber yield-related traits, which contributed the most to the genetic divergence. The most divergent pairs of genotypes are suggested for crossbreeding. The genotypes evaluated are suitable for breeding and may be used to continue the IAC rubber tree breeding program.
Resumo:
Background: It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs). This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements.Results: Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion: We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.