993 resultados para ANTIMICROBIAL PHOTODYNAMIC THERAPY
Resumo:
The first effective therapy for exudative macular degeneration (AMD) was Photodynamic Therapy (PDT). Diagnosis of the disease was to a large extent by fluorescein angiography (FA). Distinguishing between the leaky choroidal neovessels (CNV) associated with exudative AMD, and the polypoidal structures associated with Polypoidal Choroidal Vasculopathy (PCV) is not always easy using FA alone. The switch to Indocyanine Green angiography helped to pinpoint PCV, and thus to study the efficacy of photodynamic therapy of this particular form of retinal disease, which is more frequently encountered among pigmented individuals. The results appear to be quite promising, and in the year following treatment only a small fraction of the patients had to be retreated. Alternatively, treating PCV with repeated intravitreal VEGF blocking agents was not as successful as it was in the treatment of wet AMD. However, combining PDT-induced angio-occlusion of the polypoidal lesions with anti-vascular endothelial growth factor therapy was shown to be quite effective, and the combination of PDT with an anti-angiogenic agent as well as a steroid, in a triple therapy, was recently also shown to be a quite promising option. In the present article we review the data on PDT of PCV, including combination therapies and alternative treatments. We also report on similarities and differences between AMD and PCV.
Resumo:
BACKGROUND AND OBJECTIVE: Experimental assessment of anticancer effect, normal tissue damage, and toxicity of intrathoracic mTHPC-mediated photodynamic therapy (PDT) combined to surgery in malignant pleural mesothelioma (MPM) bearing rats. STUDY DESIGN/MATERIALS AND METHODS: Six days after implantation of syngenic malignant mesothelioma cells in the left chest cavity of Fischer rats (n = 21) and 4 days after sensitization (0.1 mg/kg mTHPC), a left-sided pneumonectomy was performed, followed by intraoperative light delivery (652 nm, fluence 20 J/cm(2)), either by spherical illumination of the chest cavity (fluence rate 15 mW/cm(2)) or by focal illumination of a tumor area (fluence rate 150 mW/cm(2)). Controls comprised tumor-bearing untreated animals, tumor-bearing animals undergoing pneumonectomy, and tumor-bearing animals undergoing pneumonectomy and light delivery without sensitization or sensitization without light delivery. No thoracocentesis was performed during follow-up. RESULTS: An invasively growing sarcomatous type of mesothelioma was found in all animals at day 10, without tumor necrosis in control animals. PDT resulted in 0.5-1 mm deep inhomogeneous tumor necrosis after spherical, and in a 1-2 mm deep tumor necrosis after focal illumination. No injury to mediastinal organs was observed, neither after PDT with spherical nor with focal light delivery except focal interstitial lung fibrosis at the mediastinal area of the opposite lung. All animals with pneumonectomy followed by spherical PDT of the entire tumor-bearing chest cavity died within 72 hours whereas all other animals survived. All animals that died presented massive pleural effusion. CONCLUSIONS: PDT following pneumonectomy in mesothelioma bearing rats was technically feasible and allowed to study its effect on tumor and normal tissues. PDT-related tumor necrosis was observed after spherical and focal light delivery, however, pneumonectomy followed by PDT with spherical light delivery to the tumor-bearing chest cavity resulted in fatal complications.
Resumo:
Malignant pleural mesothelioma (MPM) is increasingly observed in industrial countries. Despite concerted efforts and combined treatments including surgery, chemotherapy and irradiation patients eventually succumb from relentless local progression of the disease. Recent publications have demonstrated an improved response rate with the cytostatic agent pemetrexed which will be tested in a neoadjuvant setting followed by surgery. However, effective tumor control requires new loco-regional treatment modalities, eventually in combination with neoadjuvant chemotherapy. Intraoperative photodynamic therapy (PDT) of the chest cavity has been proposed as an attractive treatment concept for MPM since a selective treatment of the tumor bed following resection has the potential to improve local tumor control. It has been shown to afford tumor destruction in patients with mesothelioma but efficiency and selectivity is not yet sufficient for routine clinical application. Experimental work on MPM has shown that tumor selectivity of PDT depend on treatment conditions and can be improved by structural modification and improved targeting of the sensitizers. Refinements of PDT for mesothelioma will depend on a more detailed understanding of the pathways for preferential sensitizer accumulation within the tumor as well as on synergistic effects between PDT and chemotherapeutic agents.
Resumo:
BACKGROUND: In specific conditions, photodynamic therapy (PDT) can enhance the distribution of macromolecules across the endothelial barrier in solid tumors. It was recently postulated that tumor neovessels were more responsive to PDT than the normal vasculature. We hypothesized that Visudyne(R)-mediated PDT could selectively increase liposomal doxorubicin (Liporubicin) uptake in sarcoma tumors to rodent lungs while sparing the normal surrounding tissue. MATERIALS AND METHODS: Sarcoma tumors were generated subpleurally in the left lower lung lobe of 66 Fischer rats. Ten days following sarcoma implantation, tumors underwent different pre-treatment schemes: no PDT (controls), low-dose PDT (0.0625 mg/kg Visudyne(R), 10 J/cm(2) and 35 mW/cm(2)) and high-dose PDT (0.125 mg/kg Visudyne(R), 10 J/cm(2) and 35 mW/cm(2)). Liporubicin was then administered and allowed to circulate for 1, 3, or 6 hours. At the end of each treatment scheme, we assessed the uptake of Liporubicin in tumor and lung tissues by high-performance liquid chromatography and fluorescence microscopy. RESULTS: In all PDT-treated groups, there was a significant enhancement of Liporubicin uptake in tumors compared to controls after 3 and 6 hours of drug circulation. In addition, Liporubicin distribution within the normal lung tissue was not affected by PDT. Thus, PDT pre-treatment significantly enhanced the ratio of tumor-to-lung drug uptake compared to controls. Finally, fluorescence microscopy revealed a well-detectable Liporubicin signaling throughout PDT-treated tumors but not in controls. CONCLUSIONS: PDT is a tumor-specific enhancer of Liporubicin distribution in sarcoma lung tumors which may find a translation in clinics.
Resumo:
BACKGROUND: The pre-conditioning of tumor vessels by low-dose photodynamic therapy (L-PDT) was shown to enhance the distribution of chemotherapy in different tumor types. However, how light dose affects drug distribution and tumor response is unknown. Here we determined the effect of L-PDT fluence on vascular transport in human mesothelioma xenografts. The best L-PDT conditions regarding drug transport were then combined with Lipoplatin(®) to determine tumor response. in vivo. Lasers Surg. Med. 47:323-330, 2015. © 2015 Wiley Periodicals, Inc. METHODS: Nude mice bearing dorsal skinfold chambers were implanted with H-Meso1 cells. Tumors were treated by Visudyne(®) -mediated photodynamic therapy with 100 mW/cm(2) fluence rate and a variable fluence (5, 10, 30, and 50 J/cm(2) ). FITC-Dextran (FITC-D) distribution was assessed in real time in tumor and normal tissues. Tumor response was then determined with best L-PDT conditions combined to Lipoplatin(®) and compared to controls in luciferase expressing H-Meso1 tumors by size and whole body bioluminescence assessment (n = 7/group). RESULTS: Tumor uptake of FITC-D following L-PDT was significantly enhanced by 10-fold in the 10 J/cm(2) but not in the 5, 30, and 50 J/cm(2) groups compared to controls. Normal surrounding tissue uptake of FITC-D following L-PDT was significantly enhanced in the 30 J/cm(2) and 50 J/cm(2) groups compared to controls. Altogether, the FITC-D tumor to normal tissue ratio was significantly higher in the 10 J/cm(2) group compared others. Tumor growth was significantly delayed in animals treated by 10 J/cm2-L-PDT combined to Lipoplatin(®) compared to controls. CONCLUSIONS: Fluence of L-PDT is critical for the optimal distribution and effect of subsequently administered chemotherapy. These findings have an importance for the clinical translation of the vascular L-PDT concept in the clinics. Lasers Surg. Med. 47:323-330, 2015.
Resumo:
A new concept in the therapy of both neoplastic and non-neoplastic diseases is discussed in this article. Photodynamic therapy (PDT) involves light activation, in the presence of molecular oxygen, of certain dyes that are taken up by the target tissue. These dyes are termed photosensitizers. The mechanism of interaction of the photosensitizers and light is discussed, along with the effects produced in the target tissue. The present status of clinical PDT is discussed along with the newer photosensitizers being used and their clinical roles. Despite the promising results from earlier clinical trials of PDT, considerable additional work is needed to bring this new modality of treatment into modern clinical practice. Improvements in the area of light source delivery, light dosimetry and the computation of models of treatment are necessary to standardize treatments and ensure proper treatment delivery. Finally, quality assurance issues in the treatment process should be introduced.
Resumo:
In many countries, photodynamic therapy (PDT) has been recognized as a standard treatment for malignant conditions (for example, esophageal and lung cancers) and non-malignant ones such as age-related macular degeneration and actinic keratoses. The administration of a non-toxic photosensitizer, its selective retention in highly proliferating cells and the later activation of this molecule by light to form reactive oxygen species that cause cell death is the principle of PDT. Three important mechanisms are responsible for the PDT effectiveness: a) direct tumor cell kill; b) damage of the tumor vasculature; c) post-treatment immunological response associated with the leukocyte stimulation and release of many inflammatory mediators like cytokines, growth factors, components of the complement system, acute phase proteins, and other immunoregulators. Due to the potential applications of this therapy, many studies have been reported regarding the effect of the treatment on cell survival/death, cell proliferation, matrix assembly, proteases and inhibitors, among others. Studies have demonstrated that PDT alters the extracellular matrix profoundly. For example, PDT induces collagen matrix changes, including cross-linking. The extracellular matrix is vital for tissue organization in multicellular organisms. In cooperation with growth factors and cytokines, it provides cells with key signals in a variety of physiological and pathological processes, for example, adhesion/migration and cell proliferation/differentiation/death. Thus, the focus of the present paper is related to the effects of PDT observed on the extracellular matrix and on the molecules associated with it, such as, adhesion molecules, matrix metalloproteinases, growth factors, and immunological mediators.
Resumo:
Photodynamic therapy (PDT) mediated by oxidative stress causes direct tumor cell damage as well as microvascular injury. To improve this treatment new photosensitizers are being synthesized and tested. We evaluated the effects of PDT with 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin (TMPP) and its zinc complex (ZnTMPP) on tumor levels of malondialdehyde (MDA), reduced glutathione (GSH) and cytokines, and on the activity of caspase-3 and metalloproteases (MMP-2 and -9) and attempted to correlate them with the histological alterations of tumors in 3-month-old male Wistar rats, 180 ± 20 g, bearing Walker 256 carcinosarcoma. Rats were randomly divided into five groups: group 1, ZnTMPP+irradiation (IR) 10 mg/kg body weight; group 2, TMPP+IR 10 mg/kg body weight; group 3, 5-aminolevulinic acid (5-ALA+IR) 250 mg/kg body weight; group 4, control, no treatment; group 5, only IR. The tumors were irradiated for 15 min with red light (100 J/cm², 10 kHz, 685 nm) 24 h after drug administration. Tumor tissue levels of MDA (1.1 ± 0.7 in ZnTMPP vs 0.1 ± 0.04 nmol/mg protein in control) and TNF-α (43.5 ± 31.2 in ZnTMPP vs 17.3 ± 1.2 pg/mg protein in control) were significantly higher in treated tumors than in controls. Higher caspase-3 activity (1.9 ± 0.9 in TMPP vs 1.1 ± 0.6 OD/mg protein in control) as well as the activation of MMP-2 (P < 0.05) were also observed in tumors. These parameters were correlated (Spearman correlation, P < 0.05) with the histological alterations. These results suggest that PDT activates the innate immune system and that the effects of PDT with TMPP and ZnTMPP are mediated by reactive oxygen species, which induce cell membrane damage and apoptosis.
Resumo:
We investigated the effect of photodynamic therapy (PDT) and of an anti-vascular cell adhesion molecule-1 (VCAM-1) monoclonal antibody on the in vivo growth of C6 glioma. Seven days after inoculation with C6 cells, adult male Wistar rats weighing 280-300 g with MRI-confirmed glioma were randomly assigned to 4 groups (N = 15 per group): PDT + VCAM-1 antibody group; PDT group; VCAM-1 antibody group; control group. Eight days after inoculation, hematoporphyrin monomethyl ether (HMME) was administered as a photosensitizer and PDT was performed at 630 nm (illumination intensity: 360 J/cm²) for 10 min. VCAM-1 antibody (50 µg/mL) was then administered (0.5 mL) through the tail vein every other day from day 8 to day 16. At day 21, 5 rats in each group were sacrificed and cancers were harvested for immunohistochemistry and Western blot assay for the detection of VCAM-1, and TUNEL assay was used to detect apoptosis. Survival and tumor volume were recorded in the remaining 10 rats in each group. In the PDT group, tumor growth was significantly suppressed (67.2%) and survival prolonged (89.3%), accompanied by an increase in apoptosis (369.5%), when compared to control. Furthermore, these changes were more pronounced in the PDT + VCAM-1 antibody group. After PDT, VCAM-1 expression was markedly increased (121.8%) and after VCAM-1 monoclonal antibody treatment, VCAM-1 expression was significantly reduced (58.2%). PDT in combination with VCAM-1 antibody can significantly inhibit the growth of C6 glioma and prolong survival. This approach may represent a promising strategy in the treatment of glioma.
Resumo:
Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances), liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.
Resumo:
Photodynamic therapy (PDT) is based on the association of a light source and tight sensitive agents in order to cause the selective death of tumor cells. To evaluate topical 5-aminolaevulinic acid (5-ALA) and diode laser photodynamic single session therapy single session for non-melanoma skin cancer (NMSC), a long-term follow-up was performed. Nineteen Bowen`s disease (BD) and 15 basal cell. carcinoma (BCC) lesions were submitted to 6-h topical and occlusive 20% 5-ALA plus DMSO and EDTA, and later were exposed to 630 nm diode laser, 100 or 300 J cm(-2) dose. At 3 months tumor-free rate was 91.2% (31/34) whereas at 60 months, 57.7% (15/26), slightly higher in BCC (63.6%; 7/11). The relation between the reduction of the clinical response and the increase of tumor dimension observed at 18 months was lost at 60 months. The sBCC recurrence was earlier compared to the nBCC one. ALA-PDT offered important advantages: it is minimally invasive, an option for patients under risk of surgical complications; clinical feasibility; treatment of multiple lesions in only one session or lesions in poor heating sites and superior esthetical results. However, the recurrence rate increase after ALA-PDT diode laser single session can be observed at tong-term follow-up, and the repetitive sessions, an additional. advantage of the method, is strongly recommended. The clinical response and recurrence time seem to be related to the laser light dose and NMSC types/sub-types, thickness and dimension, which must be considered for the choice of the ALA-PDT. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Photodynamic therapy (PDT) using a haematoporphyrin derivative (Photogem (R), General Physics Institute and clustes Ltda) as photosensitizer and light emitting diodes (LEDs) as the light source was evaluated in 12 cats with cutaneous squamous cell carcinoma. Lesions were illuminated with LEDs, (300 J/cm for 30 min) 24 h after the administration of the photosensitizer. Clinical responses were classified as complete disappearance of the tumour with total re-epithelialization; partial response (a reduction greater than 50%); and no response (less than 50% reduction). Tumours localized to the pinna treated with one (n = 3) or two (n = 4) applications of PDT yielded no response. Highly invasive tumours of the nose and nasal planum also showed no response, after two treatments (n = 2). A combination of PDT and surgery was performed in three cases. Two cats showed partial response and one complete response with one application of therapy 30 days after nasal surgery. Small and noninfiltrative lesions (n = 3) of the nasal planum showed a PR with one application (n = 2) and a CR with two applications (n = 1). This study shows that PDT using Photogem (R) and LEDs can provide local control of low-grade feline squamous cell carcinoma. The addition of PDT to surgery in more invasive cases may help prevent recurrence.
Resumo:
The analysis of histological sections has long been a valuable tool in the pathological studies. The interpretation of tissue conditions, however, relies directly on visual evaluation of tissue slides, which may be difficult to interpret because of poor contrast or poor color differentiation. The Chromatic Contrast Visualization System (CCV) combines an optical microscope with electronically controlled light-emitting diodes (LEDs) in order to generate adjustable intensities of RGB channels for sample illumination. While most image enhancement techniques rely on software post-processing of an image acquired under standard illumination conditions, CCV produces real-time variations in the color composition of the light source itself. The possibility of covering the entire RGB chromatic range, combined with the optical properties of the different tissues, allows for a substantial enhancement in image details. Traditional image acquisition methods do not exploit these visual enhancements which results in poorer visual distinction among tissue structures. Photodynamic therapy (PDT) procedures are of increasing interest in the treatment of several forms of cancer. This study uses histological slides of rat liver samples that were induced to necrosis after being exposed to PDT. Results show that visualization of tissue structures could be improved by changing colors and intensities of the microscope light source. PDT-necrosed tissue samples are better differentiated when illuminated with different color wavelengths, leading to an improved differentiation of cells in the necrosis area. Due to the potential benefits it can bring to interpretation and diagnosis, further research in this field could make CCV an attractive technique for medical applications.