977 resultados para ANTIFERROMAGNETIC CORRELATIONS
Resumo:
In this paper, we use a unique long-run dataset of regulatory constraints on capital account openness to explain stock market correlations. Since stock returns themselves are highly volatile, any examination of what drives correlations needs to focus on long runs of data. This is particularly true since some of the short-term changes in co-movements appear to reverse themselves (Delroy Hunter 2005). We argue that changes in the co-movement of indices have not been random. Rather, they are mainly driven by greater freedom to move funds from one country to another. In related work, Geert Bekaert and Campbell Harvey (2000) show that equity correlations increase after liberalization of capital markets, using a number of case studies from emerging countries. We examine this pattern systematically for the last century, and find it to be most pronounced in the recent past. We compare the importance of capital account openness with one main alternative explanation, the growing synchronization of economic fundamentals. We conclude that greater openness has been the single most important cause of growing correlations during the last quarter of a century, though increasingly correlated economic fundamentals also matter. In the conclusion, we offer some thoughts on why the effects of greater openness appear to be so much stronger today than they were during the last era of globalization before 1914.
Resumo:
This paper examines whether the introduction of government consumptionexpenditure in a standard one good model of the international real businesscycle is sufficient to reconcile the theory with the existing pattern ofinternational consumption and output correlations. I calibrate the model totwo different pairs of countries and generate the simulated distribution ofconsumption and output correlations implied by several specifications of themodel. It is shown that the model can account for existing internationalconsumption correlations only under very specific assumptions about the sizeof effect of government expenditure on agents' utility or the variabilityof government expenditure shocks. Crucial parameters are identified and thesensitivity of the results discussed.
Resumo:
During free walking, gait is automatically adjusted to provide optimal mechanical output and minimal energy expenditure; gait parameters, such as cadence, fluctuate from one stride to the next around average values. It was described that this fluctuation exhibited long-range correlations and fractal-like patterns. In addition, it was suggested that these long-range correlations disappeared if the participant followed the beep of metronome to regulate his or her pace. Until now, these fractal fluctuations were only observed for stride interval, because no technique existed to adequately analyze an extended time of free walking. The aim of the present study was to measure walking speed (WS), step frequency (SF) and step length (SL) with high accuracy (<1 cm) satellite positioning method (global positioning system or GPS) in order to detect long-range correlations in the stride-to-stride fluctuations. Eight participants walked 30 min under free and constrained (metronome) conditions. Under free walking conditions, DFA (detrended fluctuation analysis) and surrogate data tests showed that the fluctuation of WS, SL and SF exhibited a fractal pattern (i.e., scaling exponent alpha: 0.5 < alpha < 1) in a large majority of participants (7/8). Under constrained conditions (metronome), SF fluctuations became significantly anti-correlated (alpha < 0.5) in all participants. However, the scaling exponent of SL and WS was not modified. We conclude that, when the walking pace is controlled by an auditory signal, the feedback loop between the planned movement (at supraspinal level) and the sensory inputs induces a continual shifting of SF around the mean (persistent anti-correlation), but with no effect on the fluctuation dynamics of the other parameters (SL, WS).
Resumo:
This study investigated concentrations of quetiapine and norquetiapine in plasma and cerebrospinal fluid (CSF) in 22 schizophrenic patients after 4-week treatment with quetiapine (600 mg/d), which was preceded by a 3-week washout period. Blood and CSF samples were obtained on days 1 and 28, and CSF levels of homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) concentrations were measured at baseline and after 4 weeks of quetiapine, allowing calculations of differences in HVA (ΔHVA), 5-HIAA (Δ5-HIAA), and MHPG (ΔMHPG) concentrations. Patients were assessed clinically, using the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression Scale at baseline and then at weekly intervals. Plasma levels of quetiapine and norquetiapine were 1110 ± 608 and 444 ± 226 ng/mL, and the corresponding CSF levels were 29 ± 18 and 5 ± 2 ng/mL, respectively. After the treatment, the levels of HVA, 5-HIAA, and MHPG were increased by 33%, 35%, and 33%, respectively (P < 0.001). A negative correlation was found between the decrease in PANSS positive subscale scores and CSF ΔHVA (r(rho) = -0.690, P < 0.01), and the decrease in PANSS negative subscale scores both with CSF Δ5-HIAA (r(rho) = -0.619, P = 0.02) and ΔMHPG (r(rho) = -0.484, P = 0.038). Because, unfortunately, schizophrenic patients experience relapses even with the best available treatments, monitoring of CSF drug and metabolite levels might prove to be useful in tailoring individually adjusted treatments.
Resumo:
OBJECTIVE: Mutations in the genes encoding the extracellular matrix protein collagen VI (ColVI) cause a spectrum of disorders with variable inheritance including Ullrich congenital muscular dystrophy, Bethlem myopathy, and intermediate phenotypes. We extensively characterized, at the clinical, cellular, and molecular levels, 49 patients with onset in the first 2 years of life to investigate genotype-phenotype correlations. METHODS: Patients were classified into 3 groups: early-severe (18%), moderate-progressive (53%), and mild (29%). ColVI secretion was analyzed in patient-derived skin fibroblasts. Chain-specific transcript levels were quantified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and mutation identification was performed by sequencing of complementary DNA. RESULTS: ColVI secretion was altered in all fibroblast cultures studied. We identified 56 mutations, mostly novel and private. Dominant de novo mutations were detected in 61% of the cases. Importantly, mutations causing premature termination codons (PTCs) or in-frame insertions strikingly destabilized the corresponding transcripts. Homozygous PTC-causing mutations in the triple helix domains led to the most severe phenotypes (ambulation never achieved), whereas dominant de novo in-frame exon skipping and glycine missense mutations were identified in patients of the moderate-progressive group (loss of ambulation). INTERPRETATION: This work emphasizes that the diagnosis of early onset ColVI myopathies is arduous and time-consuming, and demonstrates that quantitative RT-PCR is a helpful tool for the identification of some mutation-bearing genes. Moreover, the clinical classification proposed allowed genotype-phenotype relationships to be explored, and may be useful in the design of future clinical trials.
Resumo:
SUMMARY:: The EEG patterns seen with encephalopathies can be correlated to cerebral imaging findings including head computerized tomography and MRI. Background slowing without slow-wave intrusion is seen with acute and chronic cortical impairments that spare subcortical white matter. Subcortical/white matter structural abnormalities or hydrocephalus may produce projected slow-wave activity, while clinical entities involving both cortical and subcortical regions (diffuse cerebral abnormalities) engender both background slowing and slow-wave activity. Triphasic waves are seen with hepatic and renal insufficiency or medication toxicities (e.g., lithium, baclofen) in the absence of a significant cerebral imaging abnormality, Conversely, subcortical/white matter abnormalities may facilitate the appearance of triphasic waves without significant hepatic, renal, or toxic comorbidities. More specific syndromes, such as Jakob-Creutzfeldt disease, autoimmune limbic encephalitis, autoimmune corticosteroid-responsive encephalopathy with thyroid autoimmunity, sepsis-associated encephalopathy, and acute disseminated encephalomyelitis, have imaging/EEG changes that are variable but which may include slowing and epileptiform activity. This overview highlighting EEG-imaging correlations may help the treating physician in the diagnosis, and hence the appropriate treatment, of patients with encephalopathy.
Resumo:
Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.
Resumo:
Coulomb suppression of shot noise in a ballistic diode connected to degenerate ideal contacts is analyzed in terms of the correlations taking place between current fluctuations due to carriers injected with different energies. By using Monte Carlo simulations we show that at low frequencies the origin of Coulomb suppression can be traced back to the negative correlations existing between electrons injected with an energy close to that of the potential barrier present in the diode active region and all other carriers injected with higher energies. Correlations between electrons with energy above the potential barrier with the rest of electrons are found to influence significantly the spectra at high frequency in the cutoff region.
Resumo:
Exact formulas for the effective eigenvalue characterizing the initial decay of intensity correlation functions are given in terms of stationary moments of the intensity. Spontaneous emission noise and nonwhite pump noise are considered. Our results are discussed in connection with earlier calculations, simulations, and experimental results for single-mode dye lasers, two-mode inhomogeneously broadened lasers, and two-mode dye ring lasers. The effective eigenvalue is seen to depend sensitively on noise characteristics and symmetry properties of the system. In particular, the effective eigenvalue associated with cross correlations of two-mode lasers is seen to vanish in the absence of pump noise as a consequence of detailed balance. In the presence of pump noise, the vanishing of this eigenvalue requires equal pump parameters for the two modes and statistical independence of spontaneous emission noise acting on each mode.
Resumo:
Various modern nucleon-nucleon (NN) potentials yield a very accurate fit to the nucleon-nucleon scattering phase shifts. The differences between these interactions in describing properties of nuclear matter are investigated. Various contributions to the total energy are evaluated employing the Hellmann-Feynman theorem. Special attention is paid to the two-nucleon correlation functions derived from these interactions. Differences in the predictions of the various interactions can be traced back to the inclusion of nonlocal terms.
Resumo:
The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two different realistic potentials, these sum rules are studied for Greens functions that are derived self-consistently within the T matrix approximation at finite temperature.