918 resultados para ALL-SOLID-STATE
Resumo:
Polylactic acid (PLA) is a bio-derived, biodegradable polymer with a number of similar mechanical properties to commodity plastics like polyethylene (PE) and polyethylene terephthalate (PETE). There has recently been a great interest in using PLA to replace these typical petroleum-derived polymers because of the developing trend to use more sustainable materials and technologies. However, PLA¿s inherent slow crystallization behavior is not compatible with prototypical polymer processing techniques such as molding and extrusion, and in turn inhibits its widespread use in industrial applications. In order to make PLA into a commercially-viable material, there is a need to process the material in such a way that its tendency to form crystals is enhanced. The industry standard for producing PLA products is via twin screw extrusion (TSE), where polymer pellets are fed into a heated extruder, mixed at a temperature above its melting temperature, and molded into a desired shape. A relatively novel processing technique called solid-state shear pulverization (SSSP) processes the polymer in the solid state so that nucleation sites can develop and fast crystallization can occur. SSSP has also been found to enhance the mechanical properties of a material, but its powder output form is undesirable in industry. A new process called solid-state/melt extrusion (SSME), developed at Bucknell University, combines the TSE and SSSP processes in one instrument. This technique has proven to produce moldable polymer products with increased mechanical strength. This thesis first investigated the effects of the TSE, SSSP, and SSME polymer processing techniques on PLA. The study seeks to determine the process that yields products with the most enhanced thermal and mechanical properties. For characterization, percent crystallinity, crystallization half time, storage modulus, softening temperature, degradation temperature and molecular weight were analyzed for all samples. Through these characterization techniques, it was observed that SSME-processed PLA had enhanced properties relative to TSE- and SSSP-processed PLA. Because of the previous findings, an optimization study for SSME-processed PLA was conducted where throughput and screw design were varied. The optimization study determined PLA processed with a low flow rate and a moderate screw design in an SSME process produced a polymer product with the largest increase in thermal properties and a high retention of polymer structure relative to TSE-, SSSP-, and all other SSME-processed PLA. It was concluded that the SSSP part of processing scissions polymer chains, creating defects within the material, while the TSE part of processing allows these defects to be mixed thoroughly throughout the sample. The study showed that a proper SSME setup allows for both the increase in nucleation sites within the polymer and sufficient mixing, which in turn leads to the development of a large amount of crystals in a short period of time.
Resumo:
Las fuentes de alimentación de modo conmutado (SMPS en sus siglas en inglés) se utilizan ampliamente en una gran variedad de aplicaciones. La tarea más difícil para los diseñadores de SMPS consiste en lograr simultáneamente la operación del convertidor con alto rendimiento y alta densidad de energía. El tamaño y el peso de un convertidor de potencia está dominado por los componentes pasivos, ya que estos elementos son normalmente más grandes y más pesados que otros elementos en el circuito. Para una potencia de salida dada, la cantidad de energía almacenada en el convertidor que ha de ser entregada a la carga en cada ciclo de conmutación, es inversamente proporcional a la frecuencia de conmutación del convertidor. Por lo tanto, el aumento de la frecuencia de conmutación se considera un medio para lograr soluciones más compactas con los niveles de densidad de potencia más altos. La importancia de investigar en el rango de alta frecuencia de conmutación radica en todos los beneficios que se pueden lograr: además de la reducción en el tamaño de los componentes pasivos, el aumento de la frecuencia de conmutación puede mejorar significativamente prestaciones dinámicas de convertidores de potencia. Almacenamiento de energía pequeña y el período de conmutación corto conducen a una respuesta transitoria del convertidor más rápida en presencia de las variaciones de la tensión de entrada o de la carga. Las limitaciones más importantes del incremento de la frecuencia de conmutación se relacionan con mayores pérdidas del núcleo magnético convencional, así como las pérdidas de los devanados debido a los efectos pelicular y proximidad. También, un problema potencial es el aumento de los efectos de los elementos parásitos de los componentes magnéticos - inductancia de dispersión y la capacidad entre los devanados - que causan pérdidas adicionales debido a las corrientes no deseadas. Otro factor limitante supone el incremento de las pérdidas de conmutación y el aumento de la influencia de los elementos parásitos (pistas de circuitos impresos, interconexiones y empaquetado) en el comportamiento del circuito. El uso de topologías resonantes puede abordar estos problemas mediante el uso de las técnicas de conmutaciones suaves para reducir las pérdidas de conmutación incorporando los parásitos en los elementos del circuito. Sin embargo, las mejoras de rendimiento se reducen significativamente debido a las corrientes circulantes cuando el convertidor opera fuera de las condiciones de funcionamiento nominales. A medida que la tensión de entrada o la carga cambian las corrientes circulantes incrementan en comparación con aquellos en condiciones de funcionamiento nominales. Se pueden obtener muchos beneficios potenciales de la operación de convertidores resonantes a más alta frecuencia si se emplean en aplicaciones con condiciones de tensión de entrada favorables como las que se encuentran en las arquitecturas de potencia distribuidas. La regulación de la carga y en particular la regulación de la tensión de entrada reducen tanto la densidad de potencia del convertidor como el rendimiento. Debido a la relativamente constante tensión de bus que se encuentra en arquitecturas de potencia distribuidas los convertidores resonantes son adecuados para el uso en convertidores de tipo bus (transformadores cc/cc de estado sólido). En el mercado ya están disponibles productos comerciales de transformadores cc/cc de dos puertos que tienen muy alta densidad de potencia y alto rendimiento se basan en convertidor resonante serie que opera justo en la frecuencia de resonancia y en el orden de los megahercios. Sin embargo, las mejoras futuras en el rendimiento de las arquitecturas de potencia se esperan que vengan del uso de dos o más buses de distribución de baja tensión en vez de una sola. Teniendo eso en cuenta, el objetivo principal de esta tesis es aplicar el concepto del convertidor resonante serie que funciona en su punto óptimo en un nuevo transformador cc/cc bidireccional de puertos múltiples para atender las necesidades futuras de las arquitecturas de potencia. El nuevo transformador cc/cc bidireccional de puertos múltiples se basa en la topología de convertidor resonante serie y reduce a sólo uno el número de componentes magnéticos. Conmutaciones suaves de los interruptores hacen que sea posible la operación en las altas frecuencias de conmutación para alcanzar altas densidades de potencia. Los problemas posibles con respecto a inductancias parásitas se eliminan, ya que se absorben en los Resumen elementos del circuito. El convertidor se caracteriza con una muy buena regulación de la carga propia y cruzada debido a sus pequeñas impedancias de salida intrínsecas. El transformador cc/cc de puertos múltiples opera a una frecuencia de conmutación fija y sin regulación de la tensión de entrada. En esta tesis se analiza de forma teórica y en profundidad el funcionamiento y el diseño de la topología y del transformador, modelándolos en detalle para poder optimizar su diseño. Los resultados experimentales obtenidos se corresponden con gran exactitud a aquellos proporcionados por los modelos. El efecto de los elementos parásitos son críticos y afectan a diferentes aspectos del convertidor, regulación de la tensión de salida, pérdidas de conducción, regulación cruzada, etc. También se obtienen los criterios de diseño para seleccionar los valores de los condensadores de resonancia para lograr diferentes objetivos de diseño, tales como pérdidas de conducción mínimas, la eliminación de la regulación cruzada o conmutación en apagado con corriente cero en plena carga de todos los puentes secundarios. Las conmutaciones en encendido con tensión cero en todos los interruptores se consiguen ajustando el entrehierro para obtener una inductancia magnetizante finita en el transformador. Se propone, además, un cambio en los señales de disparo para conseguir que la operación con conmutaciones en apagado con corriente cero de todos los puentes secundarios sea independiente de la variación de la carga y de las tolerancias de los condensadores resonantes. La viabilidad de la topología propuesta se verifica a través una extensa tarea de simulación y el trabajo experimental. La optimización del diseño del transformador de alta frecuencia también se aborda en este trabajo, ya que es el componente más voluminoso en el convertidor. El impacto de de la duración del tiempo muerto y el tamaño del entrehierro en el rendimiento del convertidor se analizan en un ejemplo de diseño de transformador cc/cc de tres puertos y cientos de vatios de potencia. En la parte final de esta investigación se considera la implementación y el análisis de las prestaciones de un transformador cc/cc de cuatro puertos para una aplicación de muy baja tensión y de decenas de vatios de potencia, y sin requisitos de aislamiento. Abstract Recently, switch mode power supplies (SMPS) have been used in a great variety of applications. The most challenging issue for designers of SMPS is to achieve simultaneously high efficiency operation at high power density. The size and weight of a power converter is dominated by the passive components since these elements are normally larger and heavier than other elements in the circuit. If the output power is constant, the stored amount of energy in the converter which is to be delivered to the load in each switching cycle is inversely proportional to the converter’s switching frequency. Therefore, increasing the switching frequency is considered a mean to achieve more compact solutions at higher power density levels. The importance of investigation in high switching frequency range comes from all the benefits that can be achieved. Besides the reduction in size of passive components, increasing switching frequency can significantly improve dynamic performances of power converters. Small energy storage and short switching period lead to faster transient response of the converter against the input voltage and load variations. The most important limitations for pushing up the switching frequency are related to increased conventional magnetic core loss as well as the winding loss due to the skin and proximity effect. A potential problem is also increased magnetic parasitics – leakage inductance and capacitance between the windings – that cause additional loss due to unwanted currents. Higher switching loss and the increased influence of printed circuit boards, interconnections and packaging on circuit behavior is another limiting factor. Resonant power conversion can address these problems by using soft switching techniques to reduce switching loss incorporating the parasitics into the circuit elements. However the performance gains are significantly reduced due to the circulating currents when the converter operates out of the nominal operating conditions. As the input voltage or the load change the circulating currents become higher comparing to those ones at nominal operating conditions. Multiple Input-Output Many potential gains from operating resonant converters at higher switching frequency can be obtained if they are employed in applications with favorable input voltage conditions such as those found in distributed power architectures. Load and particularly input voltage regulation reduce a converter’s power density and efficiency. Due to a relatively constant bus voltage in distributed power architectures the resonant converters are suitable for bus voltage conversion (dc/dc or solid state transformation). Unregulated two port dc/dc transformer products achieving very high power density and efficiency figures are based on series resonant converter operating just at the resonant frequency and operating in the megahertz range are already available in the market. However, further efficiency improvements of power architectures are expected to come from using two or more separate low voltage distribution buses instead of a single one. The principal objective of this dissertation is to implement the concept of the series resonant converter operating at its optimum point into a novel bidirectional multiple port dc/dc transformer to address the future needs of power architectures. The new multiple port dc/dc transformer is based on a series resonant converter topology and reduces to only one the number of magnetic components. Soft switching commutations make possible high switching frequencies to be adopted and high power densities to be achieved. Possible problems regarding stray inductances are eliminated since they are absorbed into the circuit elements. The converter features very good inherent load and cross regulation due to the small output impedances. The proposed multiple port dc/dc transformer operates at fixed switching frequency without line regulation. Extensive theoretical analysis of the topology and modeling in details are provided in order to compare with the experimental results. The relationships that show how the output voltage regulation and conduction losses are affected by the circuit parasitics are derived. The methods to select the resonant capacitor values to achieve different design goals such as minimum conduction losses, elimination of cross regulation or ZCS operation at full load of all the secondary side bridges are discussed. ZVS turn-on of all the switches is achieved by relying on the finite magnetizing inductance of the Abstract transformer. A change of the driving pattern is proposed to achieve ZCS operation of all the secondary side bridges independent on load variations or resonant capacitor tolerances. The feasibility of the proposed topology is verified through extensive simulation and experimental work. The optimization of the high frequency transformer design is also addressed in this work since it is the most bulky component in the converter. The impact of dead time interval and the gap size on the overall converter efficiency is analyzed on the design example of the three port dc/dc transformer of several hundreds of watts of the output power for high voltage applications. The final part of this research considers the implementation and performance analysis of the four port dc/dc transformer in a low voltage application of tens of watts of the output power and without isolation requirements.
Resumo:
Here we present the successful application of the microarray technology platform to the analysis of DNA polymorphisms. Using the rice genome as a model, we demonstrate the potential of a high-throughput genome analysis method called Diversity Array Technology, DArT‘. In the format presented here the technology is assaying for the presence (or amount) of a specific DNA fragment in a representation derived from the total genomic DNA of an organism or a population of organisms. Two different approaches are presented: the first involves contrasting two representations on a single array while the second involves contrasting a representation with a reference DNA fragment common to all elements of the array. The Diversity Panels created using this method allow genetic fingerprinting of any organism or group of organisms belonging to the gene pool from which the panel was developed. Diversity Arrays enable rapid and economical application of a highly parallel, solid-state genotyping technology to any genome or complex genomic mixtures.
Resumo:
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2
Resumo:
Quantitative analysis of solid-state processes from isothermal microcalorimetric data is straightforward if data for the total process have been recorded and problematic (in the more likely case) when they have not. Data are usually plotted as a function of fraction reacted (α); for calorimetric data, this requires knowledge of the total heat change (Q) upon completion of the process. Determination of Q is difficult in cases where the process is fast (initial data missing) or slow (final data missing). Here we introduce several mathematical methods that allow the direct calculation of Q by selection of data points when only partial data are present, based on analysis with the Pérez-Maqueda model. All methods in addition allow direct determination of the reaction mechanism descriptors m and n and from this the rate constant, k. The validity of the methods is tested with the use of simulated calorimetric data, and we introduce a graphical method for generating solid-state power-time data. The methods are then applied to the crystallization of indomethacin from a glass. All methods correctly recovered the total reaction enthalpy (16.6 J) and suggested that the crystallization followed an Avrami model. The rate constants for crystallization were determined to be 3.98 × 10-6, 4.13 × 10-6, and 3.98 × 10 -6 s-1 with methods 1, 2, and 3, respectively. © 2010 American Chemical Society.
Resumo:
A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers.
Resumo:
New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.
Resumo:
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.
Resumo:
Raman spectra of two well-defined types of koritnigite crystals from the Jáchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. Observed Raman bands were attributed to the (AsO3OH)2- stretching and bending vibrations, stretching and bending vibrations of water molecules and hydroxyl ions. Non-interpreted Raman spectra of koritnigite from the RRUFF database, and published infrared spectra of cobaltkoritnigite were used for comparison. The O-H...O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X-ray single crystal refinement. The presence of (AsO3OH)2- units in the crystal structure of koritnigite was proved from the Raman spectra which supports the conclusions of the X-ray structure analysis.
Resumo:
The new configuration proposed in this paper for Marx Generator (MG) aims to generate high voltage for pulsed power applications through reduced number of semiconductor components with a more efficient load supplying process. The main idea is to charge two groups of capacitors in parallel through an inductor and take advantage of resonant phenomenon in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and eventually the charged capacitors will be connected in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulated models of this converter have been investigated in Matlab/SIMULINK platform and a prototype set up has been implemented in laboratory. The acquired results of either fully satisfy the anticipations in proper operation of the converter.
Resumo:
The new configuration proposed in this paper for Marx Generator (MG.) aims to generate high voltage for pulsed power applications through reduced number of semiconductor components with a more efficient load supplying process. The main idea is to charge two groups of capacitors in parallel through an inductor and take the advantage of resonant phenomenon in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and eventually the charged capacitors will be connected in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulated models of this converter have been investigated in Matlab/SIMULINK platform and the acquired results fully satisfy the anticipations in proper operation of the converter.
Resumo:
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ.
Resumo:
A novel concept of producing high dc voltage for pulsed-power applications is proposed in this paper. The topology consists of an LC resonant circuit supplied through a tuned alternating waveform that is produced by an inverter. The control scheme is based on the detection of variations in the resonant frequency and adjustment of the switching signal patterns for the inverter to produce a square waveform with exactly the same frequencies. Therefore the capacitor voltage oscillates divergently with an increasing amplitude. A simple one-stage capacitor-diode voltage multiplier (CDVM) connected to the resonant capacitor then rectifies the alternating voltage and gives a dc level equal to twice the input voltage amplitude. The produced high voltage appears then in the form of high-voltage pulses across the load. A basic model is simulated by Simulink platform of MATLAB and the results are included in the paper.
Resumo:
Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) have been used to compare samples of YBa2Cu3O7 (YBCO) synthesised by the solid-state method and a novel co-precipitation technique. XRD results indicate that YBCO prepared by these two methods are phase pure, however the Raman and SEM results show marked differences between these samples.
Resumo:
Advances in solid-state switches and power electronics techniques have led to the development of compact, efficient and more reliable pulsed power systems. This paper proposes an efficient scheme that utilizes modular switch-capacitor units in obtaining high voltage levels with fast rise time (dv/dt) using low voltage solid-state switches. The proposed pulsed power supply has flexibility in terms of controlling energy and generating broad range of voltage levels. The energy flow can be controlled as the stored energy can be adjusted by a current source utilized at the first stage of the system. Desirable voltage level can be obtained by connecting adequate number of switch-capacitor units. Moreover, the proposed topology is load independent. Therefore it can easily supply wide range of applications especially the low impedance ones. The effectiveness of the proposed approach is verified by simulations