989 resultados para AIRBORNE FUNGI
Resumo:
Portugal has been the world leader in the cork sector in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi, raising concerns as potential occupational hazards in cork industry. The application of molecular tools is crucial in this setting, since fungal species with faster growth rates may hide other species with clinical relevance, such as species belonging to P. glabrum and A. fumigatus complexes. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city.
Resumo:
The simultaneous presence of fungi and particles in horse stable environment can create a singular exposure condition because particles have been reported has a good carrier for microorganisms and their metabolites. This study intends to characterize this setting and to recognize fungi and particles occupational exposure.
Resumo:
O projeto “Avaliação da Exposição a Fungos e Partículas em Explorações Avícolas e Suinícolas” contemplou um elevado número de colheitas ambientais e biológicas e respectivo processamento laboratorial, sendo apenas possível a sua concretização graças ao financiamento disponibilizado pela Autoridade para as Condições de Trabalho. Foi realizado um estudo transversal para avaliar a contaminação causada por fungos e partículas em 7 explorações avícolas e 7 explorações suinícolas. No que concerne à monitorização biológica, foram medidos os parâmetros espirométricos, utilizando o espirómetro MK8 Microlab, avaliada a existência de sintomas clínicos associados com a asma e outras doenças alérgicas, através de questionário adaptado European Community Respiratory Health Survey e, ainda, avaliada a sensibilização aos agentes fúngicos (IgE). Foram ainda adicionados dois objetivos ao estudo, designadamente: aferir a existência de três espécies/estirpes potencialmente patogénicas/toxinogénicas com recurso à biologia molecular e avaliar a exposição dos trabalhadores à micotoxina aflatoxina B1 por recurso a indicador biológico de exposição. Foram colhidas 27 amostras de ar de 25 litros nas explorações avícolas e 56 de 50 litros nas explorações suinícolas através do método de impacto. As colheitas de ar e a medição da concentração das partículas foram realizadas no interior e no exterior dos pavilhões, sendo este último considerado como local de referência. Simultaneamente, a temperatura e a humidade relativa também foram registadas. As colheitas das superfícies foram realizadas através da técnica de zaragatoa, tendo sido utilizado um quadrado de metal inoxidável de 10 cm de lado, de acordo com a International Standard ISO 18593 – 2004. As zaragatoas obtidas (20 das explorações avícolas e 48 das explorações suinícolas) foram inoculadas em malte de extract agar (2%) com cloranfenicol (0,05 g/L). Além das colheitas de ar e de superfícies, foram também obtidas colheitas da cama das explorações avícolas (7 novas e 14 usadas) e da cobertura do pavimento das explorações suinícolas (3 novas e 4 usadas) e embaladas em sacos esterilizados. Cada amostra foi diluída e inoculada em placas contendo malte extract agar. Todas as amostras foram incubadas a 27,5ºC durante 5 a 7 dias e obtidos resultados quantitativos (UFC/m3; UFC/m2; UFC/g) e qualitativos com a identificação das espécies fúngicas. Para a aplicação dos métodos de biologia molecular foram realizadas colheitas de ar de 300 litros utilizando o método de impinger com a velocidade de recolha de 300 L/min. A identificação molecular de três espécies potencialmente patogénicas e/ou toxinogénicas (Aspergillus flavus, Aspergillus fumigatus e Stachybotrys chartarum) foram obtidas por PCR em tempo real (PCR TR) utilizando o Rotor-Gene 6000 qPCR Detection System. As medições de partículas foram realizadas por recurso a equipamento de leitura direta (modelo Lighthouse, 2016 IAQ). Este recurso permitiu medir a concentração (mg/m3) de partículas em 5 dimensões distintas (PM 0.5; PM 1.0; PM 2.5; PM 5.0; PM10). Nas explorações avícolas, 28 espécies/géneros de fungos foram isolados no ar, tendo Aspergillus versicolor sido a espécie mais frequente (20.9%), seguida por Scopulariopsis brevicaulis (17.0%) e Penicillium sp. (14.1%). Entre o género Aspergillus, Aspergillus flavus apresentou o maior número de esporos (>2000 UFC/m3). Em relação às superfícies, A. versicolor foi detetada em maior número (>3 × 10−2 UFC/m2). Na cama nova, Penicillium foi o género mais frequente (59,9%), seguido por Alternaria (17,8%), Cladosporium (7,1%) e Aspergillus (5,7%). Na cama usada, Penicillium sp. foi o mais frequente (42,3%), seguido por Scopulariopsis sp. (38,3%), Trichosporon sp. (8,8%) e Aspergillus sp. (5,5%). Em relação à contaminação por partículas, as partículas com maior dimensão foram detectadas em maiores concentrações, designadamente as PM5.0 (partículas com a dimensão de 5.0 bm ou menos) e PM10 (partículas com a dimensão de 10 bm ou menos). Neste setting a prevalência da alteração ventilatória obstrutiva foi superior nos indivíduos com maior tempo de exposição (31,7%) independentemente de serem fumadores (17,1%) ou não fumadores (14,6%). Relativamente à avaliação do IgE específico, foi apenas realizado em trabalhadores das explorações avícolas (14 mulheres e 33 homens), não tendo sido encontrada associação positiva (p<0.05%) entre a contaminação fúngica e a sensibilização a antigénios fúngicos. No caso das explorações suinícolas, Aspergillus versicolor foi a espécie mais frequente (20,9%), seguida por Scopulariopsis brevicaulis (17,0%) e Penicillium sp. (14,1%). No género Aspergillus, A. versicolor apresentou o maior isolamento no ar (>2000 UFC/m3) e a maior prevalência (41,9%), seguida por A. flavus e A. fumigatus (8,1%). Em relação às superfícies analisadas, A. versicolor foi detetada em maior número (>3 ×10−2 UFC/m2). No caso da cobertura do pavimento das explorações suinícolas, o género Thicoderma foi o mais frequente na cobertura nova (28,0%) seguida por A. versicolor e Acremonium sp. (14,0%). O género Mucor foi o mais frequente na cobertura usada (25,1%), seguido por Trichoderma sp. (18,3%) e Acremonium sp. (11,2%). Relativamente às partículas, foram evidenciados também valores mais elevados na dimensão PM5 e, predominantes nas PM10. Neste contexto, apenas 4 participantes (22,2%) apresentaram uma alteração ventilatória obstrutiva. Destes, as obstruções mais graves encontraram-se nos que também apresentavam maior tempo de exposição. A prevalência de asma na amostra de trabalhadores em estudo, pertencentes aos 2 contextos em estudo, foi de 8,75%, tendo-se verificado também uma prevalência elevada de sintomatologia respiratória em profissionais não asmáticos. Em relação à utilização complementar dos métodos convencionais e moleculares, é recomendável que a avaliação da contaminação fúngica nestes settings, e, consequentemente, a exposição profissional a fungos, seja suportada pelas duas metodologias e, ainda, que ocorre exposição ocupacional à micotoxina aflatoxina B1 em ambos os contextos profissionais. Face aos resultados obtidos, é importante salientar que os settings alvo de estudo carecem de uma intervenção integrada em Saúde Ocupacional no âmbito da vigilância ambiental e da vigilância da saúde, com o objetivo de diminuir a exposição aos dois factores de risco estudados (fungos e partículas).
Resumo:
Contrary to fungi, exposure to mycotoxins is not usually identified as a risk factor present in occupational settings. This is probably due to the inexistence of limits regarding concentration of airborne mycotoxins, and also due to the fact that these compounds are rarely monitored in occupational environments. Despite the optimal conditions for fungal growth and, consequently, for mycotoxins production in all the waste management chain, only a few articles were dedicated to study occupational exposure to mycotoxins in this occupational setting. Aim of study: A study was developed in Portugal aiming to assess occupational co-exposure to mycotoxins in the waste management setting.
Resumo:
Contrary to fungi, exposure to mycotoxins is not usually identified as a risk factor present in occupational settings. This is probably due to the inexistence of limits regarding concentration of airborne mycotoxins, and also due to the fact that these compounds are rarely monitored in occupational environments. Aflatoxin B1 (AFB1) is the most prevalent aflatoxin and is associated with carcinogenicity, teratogenicity, genotoxicity and immunotoxicity but only a few studies examined exposure in occupational settings. Workers can be exposed to high airborne levels during certain operations in specific occupational settings. Aim of study: The study aimed to assess exposure to AFB1 in three settings: poultry, swine production and waste management.
Resumo:
Fitness centres are special places where conditions for microbiological proliferation should be considered. Moisture due to human perspiration and water condensation as a result of human physical activities are prevalent in this type of buildings. Exposure to microbial contaminants is clinically associated with respiratory disorders and people who work out in polluted environments would be susceptible to contaminants. This work studied the indoor air contamination in three gymnasiums in Lisbon. The sampling was performed at two periods: at the opening (morning) and closing (night) of the three gymnasiums. The airborne bacterial and fungal populations were sampled by impaction directly onto Tryptic Soy Agar (for bacteria) and Malt Extract Agar (for fungi) plates, using a Merck MAS-100 air sampler. Higher bacterial concentrations were found at night as compared to the morning but the same behaviour was not found for fungal concentrations. Gram-negative catalase positive cocci were the dominant bacteria in indoor air samples of the studied gymnasiums. In this study, 21 genera/species of fungal colonies were identified. Chrysosporium sp., Chrysonilia sp., Neoscytalidium hialinum, Sepedonium sp. and Penicillium sp. were the most prevalent species identified in the morning, while Cladosporium sp., Penicillium sp., Chrysosporium sp., Acremonium sp. and Chrysonilia sp. were more prevalent at night. A well-designed sanitation and maintenance program for gymnasiums is needed to ensure healthier space for indoor physical activity.
Resumo:
Fungi are essential to the survival of our global ecology, but they might pose a significant threat to the health of occupants when they grow in our buildings. The exposure to fungi in homes is a significant risk factor for a number of respiratory symptoms. Well-known illnesses caused by fungi include allergy and hypersensitivity pneumonitis. Environmental monitoring for fungi and their disease agents are important aspects of exposure assessment, but few guidelines exist for interpreting their health impacts. This book answers the questions: How does one detect and measure the presence of indoor fungi? What is an acceptable level of indoor fungi? How do we relate this information to human health problems?
Resumo:
According to numerous studies, airborne nanoparticles have a potential to produce serious adverse human health effects when deposited into the respiratory tract. The most important parts of the lung are the alveolar regions with their enormous surface areas and potential to transfer nanoparticles into the blood stream. These effects may be potentiated in case of the elderly, since this population is more susceptible to air pollutants in general and more to nanoparticles than larger particles. The main goal of this investigation was to determine the exposure of institutionalized elders to nanoparticles using Nanoparticle Surface Area Monitor (NSAM) equipment to calculate the deposited surface area (DSA) of nanoparticles into elderly lungs. In total, 193 institutionalized individuals over 65 yr of age were examined in four elderly care centers (ECC). The occupancy daily pattern was achieved by applying a questionnaire, and it was concluded that these subjects spent most of their time indoors, including the bedroom and living room, the indoor microenvironments with higher prevalence of elderly occupancy. The deposited surface area ranged from 10 to 46 mu m(2)/cm(3). The living rooms presented significantly higher levels compared with bedrooms. Comparing PM10 concentrations with nanoparticles deposited surface area in elderly lungs, it is conceivable that living rooms presented the highest concentration of PM10 and were similar to the highest average DSA. The temporal distribution of DSA was also assessed. While data showed a quantitative fluctuation in values in bedrooms, high peaks were detected in living rooms.
Resumo:
The present study is focused on the characterization of ultrafine particles emitted in welding of steel using mixtures of Ar+CO2, and intends to analyze which are the main process parameters which may have influence on the emission itself. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the distance to the welding front and also from the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne ultrafine particles seem to increase with the current intensity as fume formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. The later mixtures originate higher concentrations of ultrafine particles (as measured by number of particles by cm3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding worker's exposure. © 2014 Sociedade Portuguesa de Materiais (SPM). Published by Elsevier España, S.L. All rights reserved.
Resumo:
The aim of this study was the assessment of exposure to ultrafine in the urban environment of Lisbon, Portugal, due to automobile traffic, and consisted of the determination of deposited alveolar surface area in an avenue leading to the town center during late spring. This study revealed differentiated patterns for weekdays and weekends, which could be related with the fluxes of automobile traffic. During a typical week, ultrafine particles alveolar deposited surface area varied between 35.0 and 89.2 mu m(2)/cm(3), which is comparable with levels reported for other towns such in Germany and the United States. These measurements were also complemented by measuring the electrical mobility diameter (varying from 18.3 to 128.3 nm) and number of particles that showed higher values than those previously reported for Madrid and Brisbane. Also, electron microscopy showed that the collected particles were composed of carbonaceous agglomerates, typical of particles emitted by the exhaustion of diesel vehicles. Implications: The approach of this study considers the measurement of surface deposited alveolar area of particles in the outdoor urban environment of Lisbon, Portugal. This type of measurements has not been done so far. Only particulate matter with aerodynamic diameters <2.5 (PM2.5) and >10 (PM10) mu m have been measured in outdoor environments and the levels found cannot be found responsible for all the observed health effects. Therefore, the exposure to nano- and ultrafine particles has not been assessed systematically, and several authors consider this as a real knowledge gap and claim for data such as these that will allow for deriving better and more comprehensive epidemiologic studies. Nanoparticle surface area monitor (NSAM) equipments are recent ones and their use has been limited to indoor atmospheres. However, as this study shows, NSAM is a very powerful tool for outdoor environments also. As most lung diseases are, in fact, related to deposition of the alveolar region of the lung, the metric used in this study is the ideal one.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 mu m(2)/cm(3) (increased to 72.9 mu m(2)/cm(3) due to gas burning) to a maximum of 890.3 mu m(2)/cm(3) measured during fish boiling in water, and a maximum of 4500 mu m(2)/cm(3) during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.
Resumo:
The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 mu m(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 mu m2/cm3, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
Mestrado em Engenharia Química - Ramo Tecnologias de Protecção Ambiental