365 resultados para ACIDOSIS
Resumo:
Cerebral malaria (CM) is a life-threatening complication of Plasmodium falciparum malaria that continues to be a major global health problem. Brain vascular dysfunction is a main factor underlying the pathogenesis of CM and can be a target for the development of adjuvant therapies for the disease. Vascular occlusion by parasitised red blood cells and vasoconstriction/vascular dysfunction results in impaired cerebral blood flow, ischaemia, hypoxia, acidosis and death. In this review, we discuss the mechanisms of vascular dysfunction in CM and the roles of low nitric oxide bioavailability, high levels of endothelin-1 and dysfunction of the angiopoietin-Tie2 axis. We also discuss the usefulness and relevance of the murine experimental model of CM by Plasmodium berghei ANKA to identify mechanisms of disease and to screen potential therapeutic interventions.
Resumo:
Background: Isolated complex III deficiencies are caused by mutations in the mitochondrial CytB gene, in the BCS1L gene coding for a CIII assembly factor and in the UQCRQ gene that codes for the ubiquinone binding protein of complex III. Objective: Description of clinical features, mitochondrial function and molecular genetic analysis in a patient with an isolated complex III deficiency. Patient: A 17 year old boy, born to consanguineous parents who presented with hypoglycemia, glycosuria, deafness, growth retardation, Fanconi Syndrome and severe lactic acidosis in the neonatal period. Methods: Activities and assembly of OXPHOS complexes were investigated spectrophotometrically and by BN-PAGE. mt-DNAwas screened for deletions. Cytochrome b (CytB) and the BCS1L gene were sequenced. Results: Isolated complex III deficiency was detected in the patient's skeletal muscle. Using BN-PAGE blotting a complex III of lower molecular weight was detected. Staining the 2D reveals a missing subunit. No mutation was detected in the mitochondrial CytB gene. Sequence analysis of BCS1L revealed a novel homozygous point mutation p.M48V. Conclusion: The patients decreased complex III activity is most likely caused by incomplete assembly of complex III due to the homozygous p. M48V mutation in the BCS1L gene.
Resumo:
BACKGROUND: Pearson marrow-pancreas syndrome (PS) is usually a fatal mitochondrial disease, mostly diagnosed during infancy or postmortem. PS is caused by the deletions or duplications of mitochondrial DNA (mtDNA). The tissue distribution and relative proportions of expressed abnormal mtDNA determine the phenotype and the clinical course. MATERIALS AND METHODS: We describe the case of a term baby boy who was diagnosed with PS early in the neonatal period due to severe aregenerative anemia and persistent lactic acidosis. RESULTS: His neurological examination was abnormal since birth. Brain magnetic resonance imaging (MRI) at term was abnormal, indicating that mitochondrial encephalopathy in PS can be already manifested in the neonatal period. To our knowledge, neonatal encephalopathy in PS has not been previously described. CONCLUSION: PS is a rare condition diagnosed in the newborn. It should be suspected in the presence of severe anemia and persistent lactic acidosis, and may manifest with early encephalopathy.
Resumo:
OBJECTIVE: To investigate the hemodynamic effects of L-canavanine (an inhibitor of inducible, but not of constitutive, nitric oxide synthase) in endotoxic shock. DESIGN: Controlled, randomized, experimental study. SETTING: Animal laboratory. SUBJECTS: Wistar rats. INTERVENTIONS: Rats were anesthetized with pentobarbital, and hemodynamically monitored. One hour after an intravenous challenge with 5 mg/kg of Escherichia coli endotoxin, the rats were randomized to receive a continuous infusion of either L-canavanine (20 mg/kg/hr; n = 8) or vehicle only (isotonic saline, n = 11). In all animals, the infusion was given over 5 hrs at a rate of 2 mL/kg/hr. These experiments were repeated in additional rats challenged with isotonic saline instead of endotoxin (sham experiments). MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, heart rate, thermodilution cardiac output, central venous pressure, mean systemic filling pressure, urine output, arterial blood gases, blood lactate concentration, and hematocrit were measured. In sham experiments, hemodynamic stability was maintained throughout and L-canavanine had no detectable effect. Animals challenged with endotoxin and not treated with L-canavanine developed progressive hypotension and low cardiac output. After 6 hrs of endotoxemia, both central venous pressure and mean systemic filling pressure were significantly below their baseline values, indicating relative hypovolemia as the main determinant of reduced cardiac output. In endotoxemic animals treated with L-canavanine, hypotension was less marked, while cardiac output, central venous pressure, and mean systemic filling pressure were maintained throughout the experiment. L-canavanine had no effect on the time-course of hematocrit. L-canavanine significantly increased urine output and reduced the severity of lactic acidosis. CONCLUSIONS: Six hours after an endotoxin challenge in rats, low cardiac output develops, which appears to be primarily related to relative hypovolemia. L-canavanine, a selective inhibitor of the inducible nitric oxide synthase, increases the mean systemic filling pressure, thereby improving venous return, under these conditions.
Resumo:
Metabolic acidosis is a prevalent complication in moderate and late stages of chronic kidney disease (CKD). It is established that the correction of metabolic acidosis may improve metabolic bone disorders and protein degradation in the skeletal muscle, two characteristic complications of patients with advanced CKD. In the last 18 months, three randomized controlled trials have drawn the attention on a novel indication to correct metabolic acidosis in these patients, i.e., halting CKD progression. These data show that sodium bicarbonate, a cheap and easily manageable treatment, may delay the progression of CKD and the need of a renal replacement therapy such as dialysis or kidney transplantation.
Resumo:
The prevalence, clinical presentation, and risk factors for hyperlactatemia among patients receiving antiretroviral therapy was determined during a 1-month period for patients in the Swiss HIV Cohort Study. Overall, 73 (8.3%) of 880 patients presented an increase in serum lactate of >1.1 times the upper normal limit (UNL). For 9 patients (1%), lactate elevation was moderate or severe (>2.2 times the UNL). Patients who presented with hyperlactatemia were more likely to be receiving stavudine with or without didanosine (odds ratio, 2.7; 95% confidence interval, 1.5-4.8), as compared with patients who received zidovudine-based regimens. The risk increased with increasing time receiving stavudine with or without didanosine. The association between hyperlactatemia and stavudine with or without didanosine was not biased by these medications being more recently available and, therefore, being given preferentially to patients who had prolonged use of nucleoside analog reverse-transcriptase inhibitors. Hyperlactatemia was associated with lipoatrophy, hyperlipidemia, and hyperglycemia. Age, sex, or stage of infection with human immunodeficiency virus were not predictive of hyperlactatemia. Determination of lactate levels may prove useful in the screening for mitochondrial toxicity.
Resumo:
There is growing evidence that consumption of a Western diet is a risk factor for osteoporosis through excess acid supply, while fruits and vegetables balance the excess acidity, mostly by providing K-rich bicarbonate-rich foods. Western diets consumed by adults generate approximately 50-100 mEq acid/d; therefore, healthy adults consuming such a diet are at risk of chronic low-grade metabolic acidosis, which worsens with age as a result of declining kidney function. Bone buffers the excess acid by delivering cations and it is considered that with time an overstimulation of this process will lead to the dissolution of the bone mineral content and hence to reduced bone mass. Intakes of K, Mg and fruit and vegetables have been associated with a higher alkaline status and a subsequent beneficial effect on bone health. In healthy male volunteers an acid-forming diet increases urinary Ca excretion by 74% and urinary C-terminal telopeptide of type I collagen (C-telopeptide) excretion by 19% when compared with an alkali (base-forming) diet. Cross-sectional studies have shown that there is a correlation between the nutritional acid load and bone health measured by bone ultrasound or dual-energy X-ray absorptiometry. Few studies have been undertaken in very elderly women (>75 years), whose osteoporosis risk is very pertinent. The EVAluation of Nutrients Intakes and Bone Ultra Sound Study has developed and validated (n 51) an FFQ for use in a very elderly Swiss population (mean age 80.4 (sd 2.99) years), which has shown intakes of key nutrients (energy, fat, carbohydrate, Ca, Mg, vitamin C, D and E) to be low in 401 subjects. A subsequent study to assess net endogenous acid production (NEAP) and bone ultrasound results in 256 women aged > or = 75 years has shown that lower NEAP (P=0.023) and higher K intake (P=0.033) are correlated with higher bone ultrasound results. High acid load may be an important additional risk factor that may be particularly relevant in very elderly patients with an already-high fracture risk. The latter study adds to knowledge by confirming a positive link between dietary alkalinity and bone health indices in the very elderly. In a further study to complement these findings it has also been shown in a group of thirty young women that in Ca sufficiency an acid Ca-rich water has no effect on bone resorption, while an alkaline bicarbonate-rich water leads to a decrease in both serum parathyroid hormone and serum C-telopeptide. Further investigations need to be undertaken to study whether these positive effects on bone loss are maintained over long-term treatment. Mineral-water consumption could be an easy and inexpensive way of helping to prevent osteoporosis and could be of major interest for long-term prevention of bone loss.
Resumo:
Metformin is an oral antihyperglycemic agent used in the management of type 2 diabetes mellitus. Lactic acidosis from metformin overdose is a rare complication of metformin therapy and occurs infrequently with therapeutic use. Fatal cases, both accidental and intentional, are extremely rare in clinical practice. Metformin is eliminated by the kidneys, and impaired renal function can result in an increased plasma concentration of the drug. In this report, we describe an autopsy case involving a 70-year-old woman suffering from diabetes mellitus and impaired renal function who received metformin treatment. Metformin concentrations in the peripheral blood collected during hospitalization and femoral blood collected during autopsy were 42 and 47.3 µg/ml, respectively. Lactic acidosis (29.10 mmol/l) was objectified during hospitalization. Furthermore, postmortem biochemistry allowed ketoacidosis to be diagnosed (blood β-hydroxybutyrate, 10,500 µmol/l). Death was attributed to lactic acidosis due to metformin intoxication. Increased plasma concentrations of the drug were attributed to severely impaired renal function. The case emphasizes the usefulness of performing exhaustive toxicology and postmortem biochemistry towards the more complete understanding of the pathophysiological mechanisms that may be involved in the death process.
Resumo:
BACKGROUND: A point mutation at the locus 3243 of the mitonchondrial DNA (mtDNA) is associated with either the MIDD syndrome (maternally inherited diabetes, deafness), the MELAS syndrome (myopathy, encephalitis, lactic acidosis, stroke) or cardiac, digestive, endocrine or exocrine dysfunctions. We report a peculiar maculopathy in two patients with an mtDNA 3243 mutation. HISTORY AND SIGNS: Case 1: A visually asymptomatic 40-year-old woman was examined for screening of diabetic retinopathy. Visual acuity was 10 / 10 in both eyes. Case 2: A 54-year-old woman with deafness and diabetes complained of visual loss. Visual acuity was 6 / 10 for the right eye and 0.5 / 10 for the left eye. Both patients exhibited a chorioretinal areolar atrophy. Case 1 was followed over 15 years and exhibited a slow progression of the maculopathy with moderate loss of visual acuity to 6 / 10 in both eyes, but marked handicap from the annular scotoma. THERAPY AND OUTCOME: None. CONCLUSION: Both patients presented a perimacular annular retinal atrophy. Patients harbouring mtDNA 3243 mutation should be examined for the presence of a maculopathy, even if they are asymptomatic. Conversely, the finding of such a geographic maculopathy should suggest the possibility of a point mutation at the locus 3243 of the mitochondrial DNA, especially in the presences of diabetes mellitus and/or deafness
Resumo:
Exome sequencing of an individual with congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis, all typical symptoms of Sengers syndrome, discovered two nonsense mutations in the gene encoding mitochondrial acylglycerol kinase (AGK). Mutation screening of AGK in further individuals with congenital cataracts and cardiomyopathy identified numerous loss-of-function mutations in an additional eight families, confirming the causal nature of AGK deficiency in Sengers syndrome. The loss of AGK led to a decrease of the adenine nucleotide translocator in the inner mitochondrial membrane in muscle, consistent with a role of AGK in driving the assembly of the translocator as a result of its effects on phospholipid metabolism in mitochondria.
Resumo:
We developed a mathematical model of Ca transport along the late distal convoluted tubule (DCT2) and the connecting tubule (CNT) to investigate the mechanisms that regulate Ca reabsorption in the DCT2-CNT. The model accounts for apical Ca influx across transient receptor potential vanilloid 5 (TRPV5) channels and basolateral Ca efflux via plasma membrane Ca-ATPase pumps and type 1 Na/Ca exchangers (NCX1). Model simulations reproduce experimentally observed variations in Ca uptake as a function of extracellular pH, Na, and Mg concentration. Our results indicate that amiloride enhances Ca reabsorption in the DCT2-CNT predominantly by increasing the driving force across NCX1, thereby stimulating Ca efflux. They also suggest that because aldosterone upregulates both apical and basolateral Na transport pathways, it has a lesser impact on Ca reabsorption than amiloride. Conversely, the model predicts that full NCX1 inhibition and parathyroidectomy each augment the Ca load delivered to the collecting duct severalfold. In addition, our results suggest that regulation of TRPV5 activity by luminal pH has a small impact, per se, on transepithelial Ca fluxes; the reduction in Ca reabsorption induced by metabolic acidosis likely stems from decreases in TRPV5 expression. In contrast, elevations in luminal Ca are predicted to significantly decrease TRPV5 activity via the Ca-sensing receptor. Nevertheless, following the administration of furosemide, the calcium-sensing receptor-mediated increase in Ca reabsorption in the DCT2-CNT is calculated to be insufficient to prevent hypercalciuria. Altogether, our model predicts complex interactions between calcium and sodium reabsorption in the DCT2-CNT.
Resumo:
BACKGROUND AND OBJECTIVE: Arterial base excess and lactate levels are key parameters in the assessment of critically ill patients. The use of venous blood gas analysis may be of clinical interest when no arterial blood is available initially. METHODS: Twenty-four pigs underwent progressive normovolaemic haemodilution and subsequent progressive haemorrhage until the death of the animal. Base excess and lactate levels were determined from arterial and central venous blood after each step. In addition, base excess was calculated by the Van Slyke equation modified by Zander (BE(z)). Continuous variables were summarized as mean +/- SD and represent all measurements (n = 195). RESULTS: Base excess according to National Committee for Clinical Laboratory Standards for arterial blood was 2.27 +/- 4.12 versus 2.48 +/- 4.33 mmol(-l) for central venous blood (P = 0.099) with a strong correlation (r(2) = 0.960, P < 0.001). Standard deviation of the differences between these parameters (SD-DIFBE) did not increase (P = 0.355) during haemorrhage as compared with haemodilution. Arterial lactate was 2.66 +/- 3.23 versus 2.71 +/- 2.80 mmol(-l) in central venous blood (P = 0.330) with a strong correlation (r(2) = 0.983, P < 0.001). SD-DIFLAC increased (P < 0.001) during haemorrhage. BE(z) for central venous blood was 2.22 +/- 4.62 mmol(-l) (P = 0.006 versus arterial base excess according to National Committee for Clinical Laboratory Standards) with strong correlation (r(2) = 0.942, P < 0.001). SD-DIFBE(z)/base excess increased (P < 0.024) during haemorrhage. CONCLUSION: Central venous blood gas analysis is a good predictor for base excess and lactate in arterial blood in steady-state conditions. However, the variation between arterial and central venous lactate increases during haemorrhage. The modification of the Van Slyke equation by Zander did not improve the agreement between central venous and arterial base excess.
Resumo:
A 15-year-old boy was admitted for vomiting, diarrhea, fatigue, crampy abdominal pain and oliguria. A renal failure was diagnosed (creatinine 2523 μmol/, urea 53,1 mmol/l) with severe aregenerative anemia (80 g/l), metabolic acidosis, hyperkalemia, elevated inflammatory markers and normal platelet count. A nephrotic proteinuria was noticed (350 g/mol). Patient's creatinine was normal 4 months before. The diagnosis of rapidly progressive glomerulonephritis was suspected. C3 and C4 were normal, ANA and ANCA were negative; anti-glomerular basement membrane antibody (anti-GBM) was positive (1/320) which lead to the diagnosis of Goodpasture's disease. Chest X-ray showed bilateral hilar infiltration and CT-scan revealed multiple alveolar haemorrhages, confirmed by broncho-alveolar lavage. Renal ultrasound showed swollen and hyperechogenous kidneys with loss of corticomedullary differentiation. Renal biopsy revealed a global extracapillary necrotising glomerulonephritis, with IgG lining the membrane at immunofluorescence. The patient was treated with continuous venovenous hemodia- filtration, plasmapheresis and immunosuppressive therapy (cyclophosphamid and corticoids) which lead to normalisation of anti-GBM level and favourable respiratory evolution with no sequelae. The renal evolution was unfavourable and the patient developed end stage renal disease and was treated with haemodialysis. Goodpasture's disease is an autoimmune process in which anti-GBM are produced against collagen IV present in the kidneys and pulmonary alveolae, resulting in acute or rapidly progressive glomerulonephritis and altering the pulmonary alveolae. It is a rare disease concerning mostly infants and young adults. Clinical presentation consists in an acute renal failure with proteinuria. Pulmonary symptoms (60-70% of the total cases) are dyspnea, cough, and haemoptysis. Diagnosis is made with the dosage of immunological anti-GBM and with renal biopsy. Factors of poor prognosis are initial oliguria, alteration of >50% of the glomerulus, very high creatinine or need of dialysis. Anti-GBM dosage is used for follow up. Patients are treated with immunosuppressive therapy for 6 to 9 months and plasmapheresis. Few recurrences are seen. Goodpasture's disease should be evoqued whenever a young patient is seen with glomerulonephritis, especially if pulmonary abnormalities are present. The disease requires an aggressive treatment in order to prevent respiratory and kidney failure.
Resumo:
BACKGROUND/AIMS: Supplementation with certain probiotics can improve gut microbial flora and immune function but should not have adverse effects. This study aimed to assess the risk of D-lactate accumulation and subsequent metabolic acidosis in infants fed on formula containing Lactobacillus johnsonii (La1). METHODS: In the framework of a double-blind, randomized controlled trial enrolling 71 infants aged 4-5 months, morning urine samples were collected before and 4 weeks after being fed formulas with or without La1 (1 x 10(8)/g powder) or being breastfed. Urinary D- and L-lactate concentrations were assayed by enzymatic, fluorimetric methods and excretion was normalized per mol creatinine. RESULTS: At baseline, no significant differences in urinary D-/L-lactate excretion among the formula-fed and breastfed groups were found. After 4 weeks, D-lactate excretion did not differ between the two formula groups, but was higher in both formula groups than in breastfed infants. In all infants receiving La1, urinary D-lactate concentrations remained within the concentration ranges of age-matched healthy infants which had been determined in an earlier study using the same analytical method. Urinary L-lactate also did not vary over time or among groups. CONCLUSIONS: Supplementation of La1 to formula did not affect urinary lactate excretion and there is no evidence of an increased risk of lactic acidosis.
Resumo:
La diarrhée congénitale de sodium est une maladie génétique très rare. Les enfants touchés par cette maladie présentent une diarrhée aqueuse sévère accompagnée d'une perte fécale de sodium et bicarbonates causant une déshydratation hyponatrémique et une acidose métabolique. Des analyses génétiques ont identifié des mutations du gène Spint2 comme cause de cette maladie. Le gène Spint2 code pour un inhibiteur de sérine protéase transmembranaire exprimé dans divers épithéliums tels que ceux du tube digestif ou des tubules rénaux. Le rôle physiologique de Spint2 n'est pas connu. De plus, aucun partenaire physiologique de Spint2 n'a été identifié et le mécanisme d'inhibition par Spint2 nous est peu connu. Le but de ce projet est donc d'obtenir de plus amples informations concernant la fonction et le rôle de Spint2 dans le contexte de la diarrhée congénitale de sodium, cela afin de mieux comprendre la physiopathologie des diarrhées et peut-être d'identifier de nouvelles cibles thérapeutiques. Un test fonctionnel dans les ovocytes de Xenopus a identifié les sérine protéases transmembranaires CAPI et Tmprssl3 comme potentielles cibles de Spint2 dans la mesure où ces deux protéases n'étaient plus bloquées par le mutant de Spint2 Y163C qui est associé avec la diarrhée congénitale de sodium. Des expériences fonctionnelles et biochimiques plus poussées suggèrent que l'inhibition de Tmprssl3 par Spint2 est le résultat d'une interaction complexe entre ces deux protéines. Les effets des sérine protéases transmembranaires sur l'échangeur Na+-H+ NHE3, qui pourrait être impliqué dans la pathogenèse de la diarrhée congénitale de sodium ont aussi été testés. Un clivage spécifique de NHE3 par la sérine protéase transmembranaire Tmprss3 a été observé lors d'expériences biochimiques. Malheureusement, la pertinence physiologique de ces résultats n'a pas pu être évaluée in vivo, étant donné que le modèle de souris knockout conditionnel de Spint2 que nous avons créé ne montrait une réduction de l'expression de Spint2 que de 50% et aucun phénotype. En résumé, ce travail met en évidence deux nouveaux partenaires possibles de Spint2, ainsi qu'une potentielle régulation de NHE3 par des sérine protéases transmembranaires. Des expériences supplémentaires faites dans des modèles animaux et lignées cellulaires sont requises pour évaluer la pertinence physiologique de ces données et pour obtenir de plus amples informations au sujet de Spint2 et de la diarrhée congénitale de sodium. - The congenital sodium diarrhea is a very rare genetic disease. Children affected by this condition suffer from a severe diarrhea characterized by watery stools with a high fecal loss of sodium and bicarbonates, resulting in hyponatremic dehydration and metabolic acidosis. Genetic analyses have identified mutations in the Spint2 gene as a cause of this disease. The spint2 gene encodes a transmembrane serine protease inhibitor expressed in various epithelial tissues including the gastro-intestinal tract and renal tubules. The physiological role of Spint2 is completely unknown. In addition, physiological partners of Spint2 are still to be identified and the mechanism of inhibition by Spint2 remains elusive. Therefore, the aim of this project was to get insights about the function and the role of Spint2 in the context of the congenital sodium diarrhea in order to better understand the pathophysiology of diarrheas and maybe identify new therapeutic targets. A functional assay in Xenopus oocytes identified the membrane-bound serine proteases CAPI and Tmprssl3 as potential targets of Spint2 because both proteases were no longer inhibited by the mutant Spint2 Y163C that has been associated with the congenital diarrhea. Further functional and biochemical experiments suggested that the inhibition of Tmprssl3 by Spint2 occurs though a complex interaction between both proteins. The effects of membrane-bound serine proteases on the Na+-H+ exchanger NHE3, which has been proposed to be involved in the pathogenesis of the congenital sodium diarrhea, were also tested. A specific cleavage of NHE3 by the membrane-bound serine protease Tmprss3 was observed in biochemical experiments. Unfortunately, the physiological relevance of these results could not be assessed in vivo since the conditional Spint2 knockout mouse model that we generated showed a reduction in Spint2 expression of only 50% and displayed no phenotype. Briefly, this work provides two new potential partners of Spint2 and emphasizes a putative regulation of NHE3 by membrane-bound serine proteases. Further work done in animal models and cell lines is required to assess the physiological relevance of these results and to obtain additional data about Spint2 and the congenital diarrhea.