990 resultados para AB INITIO METHODS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric materials have demanded a significant amount of attention for their ability to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics research has led to significant enhancements in the thermoelectric figure of merit, zT, even for materials that were already well studied. This thesis approaches thermoelectric zT optimization by developing a detailed understanding of the electronic structure using a combination of electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band structures. This is accomplished by applying these techniques to three important classes of thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where X=Zr, Ti, Hf), and CoSb3 skutterudites.

In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent optical absorption edge which correlates well to the computed ab-initio molecular dynamics result. Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and PbS, respectively. This finding can help guide electronic properties modelling by providing a concrete value for the band gap and valence band offset as a function of temperature.

Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its optical and electronic properties; transport properties indicate a largely different band gap depending on whether the material is doped n-type or p-type. By measuring and reporting the optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-hole weighted mobility ratio, A, in narrow gap materials (A is found to be approximately 5.0 in ZrNiSn).

I also show that CoSb3 contains multiple conduction bands that contribute to the thermoelectric properties. These bands are also observed to shift towards each other with temperature, eventually reaching effective convergence for T>500 K. This implies that the electronic structure in CoSb3 is critically important (and possibly engineerable) with regards to its high thermoelectric figure of merit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Materia kondentsatuko sikan erronka nagusietako bat naturako materialen izaera eza- gutu eta ezaugarritzea da. Orain dela urte batzuk arte ezagutzen genituen material guztiak, eroale, erdieroale edo isolatzaileak ziren, materialeko balentzia elektroien izae- raren arabera. Azken urteotan sikako arlo honetan burututako lanek eman dute bere fruitua, materiaren egoera berri bat aurkitu baita naturan [1]: isolatzaile topologikoa. Isolatzaile topologikoak material isolatzaileak dira baina ertza eroalea dute. Egoera eroale hauek dira material berri honen berezkotasuna. Egoerok sistemaren topologia dela eta existitzen dira eta sistemaren simetriaren bidez babestuta daudenez, deusez- taezinak dira. Hall isolatzaile kuantikoa izan zen isolatzaile topologikoen gaia teorikoki garatzen hasteko inspirazio iturria eta esperimentalki beranduago aurkitu ziren [2]. Lan ugari egiten ari da materiaren egoera berri honen teoria osatu eta era honetako material berriak aurkitzeko. Gaur egun isolatzaile topologiko ezagunenetarikoak kalogenuro fami- liakoak dira. Talde honetakoa da 2008.urtean estrainekoz aurkitu zen hiru dimentsiotako isolatzaile topologikoa: Bi1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gradu amaierako lan honetan, LAPW metodoa aztertu da solidoen propietate elektronikoak era teorikoan ikertzeko eta efektu erlatibistek hauengan duten eragina zenbatesteko tresna teoriko bezala. Konkretuki spin-orbita elkarrekintzan zentratu gara, eta hau konputazionalki inplementatzeko bigarren bariazionalaren metodoa aztertu da. Bestalde, Spin-DFT teoriaren barruan spin-orbita kodifikatzen duen trukatze-korrelazio eremu bektorialaren azterketa labur bat egin da, ekarpen erlatibista beste ikuspuntu batetik aztertu eta informazio osagarria lortzeko asmoz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an all-electron band structure approach, we have systematically calculated the natural band offsets between all group IV, III-V, and II-VI semiconductor compounds, taking into account the deformation potential of the core states. This revised approach removes assumptions regarding the reference level volume deformation and offers a more reliable prediction of the "natural" unstrained offsets. Comparison is made to experimental work, where a noticeable improvement is found compared to previous methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intervalley GAMMA - X deformation potential constants (IVDP's) have been calculated by first principle pseudopotential method for the III-V zincblende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. As a prototype crystal we have also carried out calculations on Si. When comparing the calculated IVDP's of LA phonon for GaP, InP and InAs and LO phonon for AlAs, AlSb, GaAs, GaSb and InSb with a previous calculation by EPM in rigid approximation, good agreements are found. However, our ab initio pseudopotential results of LA phonon for AlAs, AlSb, GaAs, GaSb and InSb and LO phonon for GaP, InP and InAs are about one order of magnitude smaller than those obtained by EPM calculations, which indicate that the electron redistributions upon the phonon deformations may be important in affecting GAMMA - X intervalley shatterings for these phonon modes when the anions are being displaced. In our calculations the phonon modes of LA and LO at X point have been evaluated in frozen phonon approximation. We have obtained, at the same time, the LAX and LOX phonon frequencies for these materials from total energy calculations. The calculated phonon frequencies agree very well with experimental values for these semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energetics, lattice relaxation, and the defect-induced states of st single O vacancy in alpha-Al2O3 are studied by means of supercell total-energy calculations using a first-principles method based on density-functional theory. The supercell model with 120 atoms in a hexagonal lattice is sufficiently large to give realistic results for an isolated single vacancy (square). Self-consistent calculations are performed for each assumed configuration of lattice relaxation involving the nearest-neighbor Al atoms and the next-nearest-neighbor O atoms of the vacancy site. Total-energy data thus accumulated are used to construct an energy hypersurface. A theoretical zero-temperature vacancy formation energy of 5.83 eV is obtained. Our results show a large relaxation of Al (O) atoms away from the vacancy site by about 16% (8%) of the original Al-square (O-square) distances. The relaxation of the neighboring Al atoms has a much weaker energy dependence than the O atoms. The O vacancy introduces a deep and doubly occupied defect level, or an F center in the gap, and three unoccupied defect levels near the conduction band edge, the positions of the latter are sensitive to the degree of relaxation. The defect state wave functions are found to be not so localized, but extend up to the boundary of the supercell. Defect-induced levels are also found in the valence-band region below the O 2s and the O 2p bands. Also investigated is the case of a singly occupied defect level (an F+ center). This is done by reducing both the total number of electrons in the supercell and the background positive charge by one electron in the self-consistent electronic structure calculations. The optical transitions between the occupied and excited states of the: F and F+ centers are also investigated and found to be anisotropic in agreement with optical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

100.00% 100.00%

Publicador: