990 resultados para 7039-103
Resumo:
Site 639, drilled during Leg 103 of the Ocean Drilling Program, penetrated an Upper Jurassic to Lower Cretaceous carbonate platform on a tilted fault block along the Galicia margin off the northwest Iberian Peninsula. The carbonate platform is composed primarily of a sequence of dolomite overlying limestone. Samples were analyzed for mineral chemistry, stable isotope geochemistry, fluid inclusion microthermometry, and volatile contents and by dolomite pyrolysis mass spectrometry for trace sulfate minerals. The dolomite recovered from the Galicia margin at Site 639 formed during shallow burial from sulfate-bearing, hypersaline brines at slightly elevated temperatures. The light oxygen isotopic signatures of the dolomite are interpreted as the result of the evaporative loop and slightly elevated temperatures during dolomite formation or from reequilibration at higher temperatures during deeper burial. The hypersalinity is interpreted to be associated with a nearby, shallow restricted basin that formed during rifting of the Iberian margin from Newfoundland. The dolomitization of the platform is therefore a by-product of the rifting.
Resumo:
The Galicia margin lies northwest of the Iberian Peninsula and is a passive ocean margin with thin sedimentary cover. Altered peridotite was recovered from ODP Site 637, on the north-trending ridge at the western edge of the margin, near the oceanic/continental crust boundary. The altered ultramafics were originally clinopyroxene-rich upper mantle harzburgites and are now extensively serpentinized (>85%) and cut by very late-stage carbonate veins. Despite pervasive late, low-temperature alteration, evidence of early, high-temperature alteration remains. Alteration is apparent as (1) amphibole rims on clinopyroxene (>800°C), (2) hornblende + tremolite (450° to 800°C), (3) breakdown of hornblende to form tremolite + chlorite (<450°C), (4) zoned Cr-spinels, (5) hydration of orthopyroxene and olivine to serpentine, (6) serpentine veins, (7) replacement of pyroxene and olivine by calcite, and (8) calcite veins and vugs. Both the relict igneous and the high-temperature alteration minerals (amphiboles) show evidence of brittle deformation. Subsequent low-temperature alteration veins and minerals are deformed only in faulted and brecciated zones. This textural evidence suggests that the low-temperature alteration occurred after emplacement of the ultramafics at the surface. Serpentine fills tension fractures in orthopyroxene, and both serpentine and calcite fill tension cracks in olivine. The high-temperature alterations in these samples are similar to those found in oceanic fracture zone and ophiolite ultramafics. This widespread occurrence of high-temperature alteration suggests that hot fluids were pervasive in these ultramafic blocks. Localization of high-temperature alteration close to large carbonate veins suggests channelization of the late, low-temperature fluids. Earlier hydrations (e.g., high-temperature alterations and serpentinization) were pervasive.