992 resultados para 7038-107
Resumo:
The upper Miocene sedimentary sequence of Site 652, located on the lower continental margin of eastern Sardinia, was cored and logged during Ocean Drilling Program (ODP) Leg 107. Geophysical and geochemical logs from the interval 170-365 m below seafloor (mbsf), as well as various core measurements (CaCO3, grain size, X-ray diffraction), provide a mineralogical-geochemical picture that is interpreted in the framework of the climatic and tectonic evolution of the western Tyrrhenian. The results indicate the presence of short- and long-term mineralogical variations. Short-term variations are represented by calcium-carbonate fluctuations in which the amount of CaCO3 is correlated to the grain size of the sediments; coarser sediments are associated with high carbonate content and abundant detrital material. Long-term variation corresponds to a gross grain-size change in the upper part of the sequence, where predominantly fine-grained sediments may indicate a gradual deepening of the lacustrine basin towards the Pliocene. Regional climatic changes and rift-related tectonism are possible causes of this variability in the sedimentation patterns. The clay association is characterized by chlorite, illite, and smectite as dominant minerals, as well as mixed-layers clays, kaolinite, and palygorskite. Chlorite, mixed-layers clays, and illite increase at the expense of smectite below the pebble zone (335 mbsf). This is indicative of diagenetic processes related to the high geothermal gradient and to the chemistry of the evaporative pore waters, rather than to changes in the depositional environment.
Resumo:
It has long been speculated that glacio-eustatic sea level drop may have caused or contributed to the isolation and consequent desiccation of the Mediterranean in the late Miocene (the 'Messinian salinity crisis'). Ocean Drilling Program site 654 on the Sardinia margin of the Tyrrhenian Sea is the first deep-sea drill site to penetrate through upper Messinian evaporites into lower Messinian/upper Tortonian open marine sediments, and thus offers a unique opportunity to date the onset of the salinity crisis. A reexamination of the magnetostratigraphic, biostratigraphic, and stable isotope-stratigraphic constraints on the preevaporite sediments of site 654 has yielded two possible ages for the contact between salinity crisis sediments and the underlying normal marine sediments. One magnetostratigraphic interpretation plus the biostratigraphically determined position of the Tortonian/Messinian boundary imply a date of about 6.2 Ma for the youngest presalinity crisis sediments. An alternative magnetostratigraphic interpretation plus the carbon isotope stratigraphy imply a date of about 5.2 Ma. The younger of these dates coincides with a delta18O spike in open ocean sediments [Keigwin, 1987 doi:10.1029/PA002i006p00639], which is attributed to increased ice volume.
Resumo:
Stable isotope analysis of two species (or groups of species) of planktonic foraminifers: Globigerinoides ruber (or G. obliquus and G. obliquus extremus) and Globigerina bulloides (or G. falconensis and G. obesa) from ODP Hole 653A and Site 654 in the Tyrrhenian basin, records the Pliocene-Pleistocene glacial history of the Northern Hemisphere. The overall increase in mean d18O values through the interval 4.6-0.08 Ma is 1.7 per mil for G. bulloides and 1.5 per mil for G. ruber. The time interval 3.1-2.5 Ma corresponds to an important phase of 18O enrichment for planktonic foraminifers. In this interval, glacial d18O values of both species G. bulloides and G. ruber increase by about l per mil, this increase being more progressive for G. ruber than for G. bulloides. The increase of interglacial d18O values is higher for G. bulloides (1.5 per mil) than for the Gruber group (1 per mil). These data suggest a more pronounced seasonal stratification of the water masses during interglacial phases. Large positive d18O fluctuations of increasing magnitude are also recorded at 2.25 and 2.15 Ma by G bulloides and appear to be diachronous with those of Site 606 in the Atlantic Ocean. Other events of increasing d18O values are recorded between 1.55 and 1.3 Ma, at 0.9 Ma, 0.8 Ma, and near 0.34 Ma. In the early Pliocene the d18O variability recorded by the planktonic species G. bulloides was higher in the Mediterranean than in the Atlantic at the same latitude. This suggests that important cyclic variations in the water budget of the Mediterranean occurred since that time. Step increases in the d18O variability are synchronous with those of the open ocean at 0.9 and 0.34 Ma. The higher variability as well as the higher amplitude of the peaks of 18O enrichment may be partly accounted for by increase of dryness over the Mediterranean area. In particular the high amplitude d18O fluctuations recorded between 3.1 and 2.1 Ma are correlated with the onset of a marked seasonal contrast and a summer dryness, revealed by pollen analyses. Strong fluctuations towards d13C values higher than modern ones are recorded by the G. ruber group species before 1.7 Ma and suggest a high production of phytoplankton. When such episodes of high primary production are correlated with episodes of decreasing 13C content of G. bulloides, they are interpreted as the consequence of a higher stratification of the upper water masses resulting itself from a marked seasonality. Such episodes occur between 4.6 and 4.05 Ma, 3.9 and 3.6 Ma, and 3.25 and 2.66 Ma. The interval 2.66-1.65 Ma corresponds to a weakening of the stratification of the upper water layers. This may be related to episodes of cooling and increasing dryness induced by the Northern Hemisphere Glaciations. The Pleistocene may have been a less productive period. The transition from highly productive to less productive surface waters also coincides with a new step increase in dryness and cooling, between 1.5 and 1.3 Ma. The comparison of the 13C records of G ruber and G. bulloides in fact suggests that a high vertical convection became a dominant feature after 2.6 Ma. Increases in the nutrient input and the stratification of the upper water masses may be suspected, however, during short episodes near 0.86 Ma (isotopic stage 25), 0.57-0.59 Ma (isotopic stage 16), 0.49 Ma (isotopic stage 13), 0.4-0.43 Ma (isotopic stage 11), and 0.22 and 0.26 Ma (part of isotopic stage 7 and transition 7/8). In fact, changes in the C02 balance within the different water masses of the Tyrrhenian basin as well as in the local primary production did not follow the general patterns of the open ocean.
Resumo:
Six whole rocks from the basaltic lava series drilled in the Vavilov basin have been analyzed by 39Ar-40Ar stepwise heating method. One sample from the upper part of the Hole 655B basement gave a plateau-age at 4.3 ± 0.3 Ma whereas the other ones showed disturbed age spectra caused by alteration processes. The weighted averages of ages measured at low and intermediate temperatures on these five samples are concordant (1) one to each other and (2) with independent estimates deduced from paleontological and paleomagnetical arguments. Ages of 4.3 ± 0.3 Ma and from 3 to 2.6 Ma may represent reasonable estimates of the crystallization ages of the basaltic lava series of the Holes 655B and 651A, respectively. These ages must be taken with caution because they correspond to argon released from secondary phases characterized by low argon retention.