965 resultados para 700300 Communication Services
Resumo:
Organic microcavity light emitting diodes typically exhibit a blue shift of the emitting wavelength with increasing viewing angle. While the wavelength shift can be reduced with the appropriate choice of organic materials and metal mirrors, for further reduction of the emission wavelength shift it is necessary to consider a mirror whose phase shift can partly compensate the effect of the change of optical path within the cavity. In this work, we used a genetic algorithm (GA) to design an asymmetric Bragg mirror in order to minimize the emission wavelength shift with viewing angle. Based on simulation results, the use of asymmetric Bragg mirrors represents a promising way to reduce the emission wavelength shift. Detailed comparison between GA optimized and conventional Bragg mirrors in terms of resonant wavelength dependence on the viewing angle, spectral narrowing, and brightness enhancement is given. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present a new method of modeling imaging of laser beams in the presence of diffraction. Our method is based on the concept of first orthogonally expanding the resultant diffraction field (that would have otherwise been obtained by the laborious application of the Huygens diffraction principle) and then representing it by an effective multimodal laser beam with different beam parameters. We show not only that the process of obtaining the new beam parameters is straightforward but also that it permits a different interpretation of the diffraction-caused focal shift in laser beams. All of the criteria that we have used to determine the minimum number of higher-order modes needed to accurately represent the diffraction field show that the mode-expansion method is numerically efficient. Finally, the characteristics of the mode-expansion method are such that it allows modeling of a vast array of diffraction problems, regardless of the characteristics of the incident laser beam, the diffracting element, or the observation plane. (C) 2005 Optical Society of America.