995 resultados para 641
Resumo:
Factor V Leiden (FV Leiden) is the most common inherited thrombophilia in Caucasians increasing the risk for venous thrombosis. Its prevalence in Finland is 2-3%. FV Leiden has also been associated with several pregnancy complications. However, the importance of FV Leiden as their risk factor is unclear. The aim of the study was to assess FV Leiden as a risk factor for pregnancy complications in which prothrombotic mechanisms may play a part. Specifically, the study aimed to assess the magnitude of the risk, if any, associated with FV Leiden for pregnancy-associated venous thrombosis, pre-eclampsia, unexplained stillbirth, and preterm birth. The study was conducted as a nested case-control study within a fixed cohort of 100,000 consecutive pregnant women in Finland. The study was approved by the ethics committee of the Finnish Red Cross Blood Service and by the Ministry of Social Affairs and Health. All participants gave written informed consent. Cases and controls were identified by using national registers. The diagnoses of the 100,000 women identified from the National Register of Blood Group and Blood Group Antibodies of Pregnant Women were obtained from the National Hospital Discharge Register. Participants gave blood samples for DNA tests and filled in questionnaires. The medical records of the participants were reviewed in 49 maternity hospitals in Finland. Genotyping was performed in the Finnish Genome Center. When evaluating pregnancy-associated venous thrombosis (34 cases, 641 controls), FV Leiden was associated with 11-fold risk (OR 11.6, 95% CI 3.6-33.6). When only analyzing women with first venous thrombosis, the risk was 6-fold (OR 5.8, 95% CI 1.6-21.8). The risk was increased by common risk factors, the risk being highest in women with FV Leiden and pre-pregnancy BMI over 30 kg/m2 (75-fold), and in women with FV Leiden and age over 35 years (60-fold). When evaluating pre-eclampsia (248 cases, 679 controls), FV Leiden was associated with a trend of increased risk (OR 1.7, 95% CI 0.8-3.9), but the association was not statistically significant. When evaluating unexplained stillbirth (44 cases, 776 controls), FV Leiden was associated with over 3-fold risk (OR 3.8, 95% CI 1.2-11.6). When evaluating preterm birth (324 cases, 752 controls), FV Leiden was associated with over 2-fold risk (OR 2.4, 95% CI 1.3-4.6). FV Leiden was especially associated with late preterm birth (32-36 weeks of gestation), but not with early preterm birth (< 32 weeks of gestation). The results of this large population-based study can be generalized to Finnish women with pregnancies continuing beyond first trimester, and may be applied to Caucasian women in populations with similar prevalence of FV Leiden and high standard prenatal care.
Resumo:
The crystal structure of the dehydro octapeptide Boc-Val-Delta Phe-Phe-Ala-Leu-Ala-Delta Phe-Leu-OH has been determined to atomic resolution by X-ray crystallographic methods. The crystals grown by slow evaporation of peptide solution in methanol/water are orthorhombic, space group P2(1)2(1)2(1). The unit cell parameters are a = 8.404(3), b = 25.598(2) and c = 27.946(3) Angstrom, Z = 4. The agreement factor is R = 7.58% for 3636 reflections having (\F-o\) greater than or equal to 3 sigma (\F-o\). The peptide molecule is characterised by a 3(10)-helix at the N-terminus and a pi-turn at the C-terminus. This conformation is exactly similar to the helix termination features observed in proteins. The pi-turn conformation observed in the octapeptide is in good agreement with the conformational features of pi-turns seen in some proteins. The alpha(L)-position in the pi-turn of the octapeptide is occupied by Delta Phe(7), which shows that even bulky residues can be accommodated in this position of the pi-turns. In proteins, it is generally seen that alpha(L)-position is occupied by glycine residue. No intermolecular head-to-tail hydrogen bonds are observed in solid state structure of the octapeptide. A water molecule located in the unit cell of the peptide molecule is mainly used to hold the peptide molecule together in the crystal. The conformation observed for the octapeptide might be useful to understand the helix termination and chain reversal in proteins and to construct helix terminators for denovo protein design.
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
Structures of monohydrogen squarates of methylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, N,N'-diemethylpiperazine and N,N,N,N-tetramethylguanidine have been studied in detail. The supramolecular hydrogen-bonded molecular networks are formed by the monoanion of squaric acid by itself or in association with the parent acid. Three types of hydrogen-bonded motifs are observed in these compounds, namely a liner chain, a cyclic dimer and a cyclic tetramer. These hydrogen-bonded motifs formed by the squaric acid species interact with the amine through N-H...O hydrogen-bonding and give rise to predominantly layered structures, while some of them also exhibit three-dimensional structures. Two of the monohydrogen squarate structures also exhibit pi-pi interactions between two squarate rings. The various hydrogen-bonding parameters in the amine squarates are discussed at length. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Static distance relays employing semiconductor devices as their active elements offer many advantages over the conventional electromagnetic and rectifier relays. The paper describes single-system and three-system static distance relays, which depend for their operation on the instantaneous-comparison or `block-spike¿ scheme. Design principles and typical discriminating and logic circuits are described for the new relaying equipment. The relaying circuitry has been devised for obtaining uniform performance on all kinds of faults, by the use of two phase detectors¿one for multiphase faults and one for earth faults. The phase detector for multiphase faults provides an improved polar characteristic in the complex-impedance plane, which fits only around the fault area of a transmission line. The other features of the relay are: reliable pickup for close-in faults, least susceptibility to maloperation under power-swing conditions, and reduction in cost and panel space required. The operating characteristics of the relays, as expressed by accuracy/range charts, are also presented.
Resumo:
Pyrochlore phase free [Pb0.94Sr0.06] [(Mn1/3Sb2/3)(0.05)(Zr0.53Ti0.47)(0.95)] O-3 ceramics has been synthesized with pure Perovskite phase by semi-wet route using the columbite precursor method. The field dependences of the dielectric response and the conductivity have been measured in a frequency range from 50 Hz to 1 MHz and in a temperature range from 303 K to 773 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency has been performed, assuming a distribution of relaxation times. The scaling behavior of the dielectric loss spectra suggests that the distribution of the relaxation times is temperature independent. The SEM photographs of the sintered specimens present the homogenous structures and well-grown grains with a sharp grain boundary. The material exhibits tetragonal structure. When measured at frequency (100 Hz), the polarization shows a strong field dependence. Different piezoelectric figures of merit (k(p), d(33) and Q(m)) of the material have also been measured obtaining their values as 0.53, 271 pC/N and 1115, respectively, which are even higher than those of pure PZT with morphotropic phase boundary (MPB) composition. Thus the present ceramics have the optimal overall performance and are promising candidates for the various high power piezoelectric applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
While the effect of electrochemical doping on single-layer graphene (SG) with holes and electrons has been investigated, the effect of charge-transfer doping on SG has not been examined hitherto. Effects of varying the concentration of electron donor and acceptor molecules such as tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE) on SG produced by mechanical exfoliation as well as by the reduction of single-layer graphene oxide have been investigated. TTF softens the G-band in the Raman spectrum, whereas TCNE stiffens the G-band. The full-width-at-half-maximum of the G-band increases on interaction with both TTF and TCNE. These effects are similar to those found with few-layer graphene, but in contrast to those found with electrochemical doping. A common feature between the two types of doping is found in the case of the 2-D band, which shows softening and stiffening on electron and hole doping, respectively. The experimental results are explained on the basis of the frequency shifts, electron-phonon coupling and structural inhomogeneities that are relevant to molecule-graphene interaction.
Resumo:
Red mud is a waste by-product generated during the processing of bauxite, the most common ore of aluminium. With the presence of ferric oxide, high surface area, resistance to poisoning and low cost, red mud made itself a good alternative to the existing commercial automobile catalyst. The cascading of dielectric barrier discharge plasma with red mud improved the NOX removal from diesel engine exhaust significantly. The DeNO(X) efficiency with discharge plasma was 74% and that with red mud was 31%. The efficiency increased to 92% when plasma was cascaded with red mud catalyst operating at a temperature of 400 degrees C. The NOX removal was dominated by NO2 removal. The studies were conducted at different temperatures and the results were discussed.
Resumo:
We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (C-PL). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible (R e << 1), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number (Re -> 0), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite Re, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (C-PL = 0.37) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; C-PL = 0.42 and 0.50 for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for Re -> infinity. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.
Resumo:
This work explores the preparation of nanocrystalline Cr3+ (1-5 mol%) doped CaSiO3 phosphors by solution combustion process and study of its photoluminescence (PL) behavior. The nanopowders are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red (FTIR) spectroscopy. PXRD results confirm monoclinic phase upon calcination at 950 degrees C for 3 h. SEM micrographs indicates that the powder is highly porous and agglomerated. The TEM images show the powder to consist of spherical shaped particles of size similar to 30-60 nm. Upon 323 nm excitation, the emission profile of CaSiO3:Cr3+ exhibits a narrow red emission peak at 641 nm due to E-2 -> (4)A(2) transition and broad band at 722 nm due to T-4(2g) -> (4)A(2g). It is observed that PL intensity increases with increase in Cr3+ concentration and highest PL intensity is observed for 3 mol% doped sample. The PL intensity decreases with further increase in Cr3+ doping. This decrease in PL intensity beyond 3 mol% is ascribed to concentration quenching. Racah parameters are calculated to describe the effects of electron-electron repulsion within the crystal lattice. The parameters show 21% reduction in the Racah parameter of free ion and the complex, indicating the moderate nephelauxetic effect in the lattice. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Gd1.96-xYxEu0.04O3 (x = 0.0, 0.49, 0.98, 1.47, 1.96 mol%) nanophosphors were synthesized by propellant combustion method at low temperature (400 degrees C). The powder X-ray diffraction patterns of as formed Gd1.96Eu0.04O3 showed monoclinic phase, however with the addition of yttria it transforms from monoclinic to pure cubic phase. The porous nature increases with increase of yttria content. The particle size was estimated from Scherrer's and W-H plots which was found to be in the range 30-40 nm. These results were in well agreement with transmission electron microscopy studies. The optical band gap energies estimated were found to be in the range 5.32-5.49 eV. PL emission was recorded under 305 nm excitation show an intense emission peak at 611 nm along with other emission peaks at 582, 641 nm. These emission peaks were attributed to the transition of D-5(0) —> F-7(J) (J = 0, 1, 2, 3) of Eu3+ ions. It was observed that PL intensity increases with increase of Y content up to x = 0.98 and thereafter intensity decreases. CIE color co-ordinates indicates that at x = 1.47 an intense red bright color can be achieved, which could find a promising application in flat panel displays. The cubic and monoclinic phases show different thermoluminescence glow peak values measured under identical conditions. The response of the cubic phase to the applied dose showed good linearity, negligible fading, and simple glow curve structure than monoclinic phase indicating that suitability of this phosphor in dosimetric applications. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The Western Ghats of India is among the top 25 biodiversity hotspots in the world. About 43% of the reported 117 bat species in India are found in this region, but few quantitative studies of bat echolocation calls and diversity have been carried out here thus far. A quantitative study of bat diversity was therefore conducted using standard techniques, including mist-netting, acoustical and roost surveys in the wet evergreen forests of Kudremukh National Park in the Western Ghats of Karnataka. A total of 106 bats were caught over 108 sampling nights, representing 17 species, 3 belonging to Megachiroptera and 14 to Microchiroptera. Acoustical and roost surveys added three more species, two from Microchiroptera and one from Megachiroptera. Of these 20 species, 4 belonged to the family Pteropodidae, 10 to Vespertilionidae, 3 to Rhinolophidae, 2 to Megadermatidae and 1 to Hipposideridae. We recorded the echolocation calls of 13 of the 16 microchiropteran species, of which the calls of 4 species (Pipistrellus coromandra, Pipistrellus affinis, Pipistrellus ceylonicus and Harpiocephalus harpia) have been recorded for the first time. Discriminant function analyses of the calls of 11 species provided 91.7% correct classification of individuals to their respective species, indicating that the echolocation calls could be used successfully for non-invasive acoustic surveys and monitoring of bat species in the future.
Resumo:
Precise information on streamflows is of major importance for planning and monitoring of water resources schemes related to hydro power, water supply, irrigation, flood control, and for maintaining ecosystem. Engineers encounter challenges when streamflow data are either unavailable or inadequate at target locations. To address these challenges, there have been efforts to develop methodologies that facilitate prediction of streamflow at ungauged sites. Conventionally, time intensive and data exhaustive rainfall-runoff models are used to arrive at streamflow at ungauged sites. Most recent studies show improved methods based on regionalization using Flow Duration Curves (FDCs). A FDC is a graphical representation of streamflow variability, which is a plot between streamflow values and their corresponding exceedance probabilities that are determined using a plotting position formula. It provides information on the percentage of time any specified magnitude of streamflow is equaled or exceeded. The present study assesses the effectiveness of two methods to predict streamflow at ungauged sites by application to catchments in Mahanadi river basin, India. The methods considered are (i) Regional flow duration curve method, and (ii) Area Ratio method. The first method involves (a) the development of regression relationships between percentile flows and attributes of catchments in the study area, (b) use of the relationships to construct regional FDC for the ungauged site, and (c) use of a spatial interpolation technique to decode information in FDC to construct streamflow time series for the ungauged site. Area ratio method is conventionally used to transfer streamflow related information from gauged sites to ungauged sites. Attributes that have been considered for the analysis include variables representing hydrology, climatology, topography, land-use/land- cover and soil properties corresponding to catchments in the study area. Effectiveness of the presented methods is assessed using jack knife cross-validation. Conclusions based on the study are presented and discussed. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Eu3+-activated layered LnOCl (Ln=La and Gd) phosphors were synthesized by the conventional solid-state method at relatively low temperature (700 degrees C) and shorter duration of 2 h. The structural parameters were refined by the Rietveld refinement analysis and confirmed by the high resolution transmission electron microscopy (HRTEM). Both the compounds were crystallized in the tetragonal structure with space group P4/nmm (No. 129). The homogeneity of the elements were analyzed by TEM mapping and found to be uniformly distributed. The photoluminescence spectra revealed that the intensity of D-5(0)-> F-7(2) transition (619 nm) was more intense in Eu3+-activated GdOCl compared to LaOCl. This was due to the property of Gd3+ ions to act as an intermediate sublattice to facilitate the energy transfer to Eu3+ ions. Intensity parameters and radiative properties such as transition probabilities, radiative lifetime and branching ratio were calculated using the Judd-Ofelt theory. The CIE color coordinates result revealed that the Eu3+-activated GdOCl (0.641, 0.354) phosphor was close to the commercial red phosphors like, Y2O3:Eu3+ (0.645, 0.347), (Y2OS)-S-2:Eu3+ (0.647, 0.343) and National Television System Committee (NTSC) (0.67, 0.33). The results suggest that the present GdOCl:Eu3+ compound acts as a potential candidate for red phosphor materials.