980 resultados para 5-AMINOLEVULINIC ACID-DERIVATIVES
Resumo:
Meso-tetra-(N-methylpiridinium-4-yl)-porphyrin (TMPyP) and meso-tetra-(4-sulfonatophenyl)-porphyrin (TPPS(4)) are photosensitizing drugs (PS) used in photodynamic therapy (PDT). Based on the fact that these compounds present similar chemical structures but opposite charges at pH levels near physiological conditions, this work aims to evaluate the in vitro and in vivo influence of these electrical charges on the iontophoretic delivery of TMPyP and TPPS4, attempting to achieve maximum accumulation of PS in skin tissue. The iontophoretic transport of these drugs from a hydrophilic gel was investigated in vitro using porcine ear skin and vertical, flow-through diffusion cells. In vivo experiments using rats were also carried out, and the penetration of the PSs was analyzed by fluorescence microscopy to visualize the manner of how these compounds were distributed in the skin after a short period of iontophoresis application. In vitro, both passive and iontophoretic delivery of the positively charged TMPyP were much greater (20-fold and 67-fold, respectively) than those of the negatively charged TPPS(4). TPPS(4) iontophoresis in vivo increased the fluorescence of the skin only in the very superficial layers. On the other hand, iontophoresis of the positively charged drug expressively increased the rat epidermis and dermis fluorescence, indicating high amounts of this drug throughout the skin layers. Moreover, TMPyP was homogeneously distributed around and into the nuclei of the skin cells, suggesting its potential use in topical PDT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
It was intended to examine the in vitro penetration of cisplatin (CIS) through porcine skin in the presence of different concentrations of monoolein (MO) as well as to verify the main barrier for CIS skin penetration. In vitro skin penetration of CIS was studied from propylene glycol (PG) solutions containing 0%, 5%, 10%, and 20% of MO using Franz-type diffusion cell and porcine ear skin. Pretreatment experiments with MO and experiments with skin without stratum corneum (SC) were also carried out. Skin penetration studies of CIS showed that the presence of MO doubled the drug permeation through the intact skin. However, permeation studies through the skin without SC caused only a small enhancement of CIS permeation compared to intact skin. Moreover, pretreatment of skin with MO formulations did not show any significant increase in the flux of the drug. In conclusion, MO did not act as a real penetration enhancer for CIS, but it increased the drug partition to the receptor solution improving CIS transdermal permeation. The absence of improvement in drug permeation by MO pretreatment and by the removal of SC indicates that the SC is not the main barrier for the permeation of the metal coordination compound. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, oral carcinoma cells were used to evaluate chloroaluminum-phthalocyanine encapsulated in liposomes as the photosensitizer agent in support of photodynamic therapy (PDT). The genotoxicity and cytotoxicity behavior of the encapsulated photosensitizer in both dark and under irradiation using the 670-nm laser were investigated with the classical trypan blue cell viability test, the acridine orange/ethidium bromide staining organelles test, micronucleus formation frequency, DNA fragmentation, and cell morphology. The cell morphology investigation was carried out using light and electronic microscopes. Our findings after PDT include reduction in cell viability (95%) associated with morphologic alterations. The neoplastic cell destruction was predominantly started by a necrotic process, according to the assay with acridine orange and ethidium bromide, and this was confirmed by electronic microscopy analysis. Neither the PDT agent nor laser irradiation alone showed cytotoxicity, genotoxicity, or even morphologic alterations. Our results reinforce the efficiency of tight-irradiated chloroaluminum-phthalocyanine in inducing a positive effect of PDT. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Photodynamic therapy requires a photosensitizer, oxygen, and activating light. For acne, pilosebaceous units are ""target"" structures. Porphyrins are synthesized in vivo from 5-aminolevulinic acid (ALA), particularly in pilosebaceous units. Different photosensitizers and drug delivery methods have been reported for acne treatment. There are a variety of porphyrin precursors with different pharmacokinetic properties. Among them, ALA and methyl-ester of ALA (MAT.) are available for possible off-label treatment of acne vulgaris. In addition, various light sources, light dosimetry, drug incubation time, and pre- and posttreatment care also change efficacy and side effects. None of these variables has been optimized for acne treatment, but a number of clinical trials provide helpful guidance. In this paper, we critically analyze clinical trials, case reports, and series of cases published through 2009. (J Am Acad Dermatol 2010;63:195-211.)
Resumo:
Fluorescence imaging for detection of non-muscle-invasive bladder cancer is based on the selective production and accumulation of fluorescing porphyrins-mainly, protoporphyrin IX-in cancerous tissues after the instillation of Hexvix®. Although the sensitivity of this procedure is very good, its specificity is somewhat limited due to fluorescence false-positive sites. Consequently, magnification cystoscopy has been investigated in order to discriminate false from true fluorescence positive findings. Both white-light and fluorescence modes are possible with the magnification cystoscope, allowing observation of the bladder wall with magnification ranging between 30× for standard observation and 650×. The optical zooming setup allows adjusting the magnification continuously in situ. In the high-magnification (HM) regime, the smallest diameter of the field of view is 600 microns and the resolution is 2.5 microns when in contact with the bladder wall. With this cystoscope, we characterized the superficial vascularization of the fluorescing sites in order to discriminate cancerous from noncancerous tissues. This procedure allowed us to establish a classification based on observed vascular patterns. Seventy-two patients subject to Hexvix® fluorescence cystoscopy were included in the study. Comparison of HM cystoscopy classification with histopathology results confirmed 32?33 (97%) cancerous biopsies and rejected 17?20 (85%) noncancerous lesions.
Resumo:
Résumé Objectifs : La thérapie photodynamique a pour but la destruction sélective du tissu néoplasique par interaction de lumière, d'oxygène et d'une substance photosensibilisatrice (la Protoporphyrine IX dans notre étude). Malgré une accumulation sélective du photosensibilisateur dans le tissu tumoral, la thérapie photodynamique du carcinome urothélial de la vessie peut endommager les cellules normales de l'épithélium urinaire. La prévention de ces lésions est importante pour la régénération de la muqueuse. Notre étude sur un modèle in vitro d'urothélium porcin étudie l'influence de la concentration du photosensibilisateur, des paramètres d'irradiation et de la production d'intermédiaires réactifs de l'oxygène (ROS) sur les effets photodynamique. Le but était de déterminer les conditions seuil pour épargner l'urothélium sain. Méthode: Dans une chambre de culture transparente à deux compartiments, des muqueuses vésicales de porc maintenues en vie ont été incubées avec une solution d'hexyl-aminolévulinate (HAL), le précurseur de la Protoporphyrine IX. Ces muqueuses ont ensuite été irradiées avec des doses lumineuses croissantes en lumière bleue et en lumière blanche, et les altérations cellulaires ont été évaluées par microscopie électronique à balayage et par un colorant fluorescent, le Sytox green. Nous avons également évalué la production d'intermédiaires réactifs de l'oxygène parla mesure de la fluorescence intracellulaire de Rhodamine 123 (R123), produit de l'oxydation de la Dihydrorhodamine 123 (DHR123) non fluorescente. Ces valeurs ont été corrélées avec celles du photo blanchiment de la PAIX. Résultats : Le taux de mortalité cellulaire était dépendant de la concentration de PAIX. Après 3 heures d'incubation, la valeur seuil de dose lumineuse pour la lumière bleu était de 0.15 et 0.75 J/cm2 (irradiance 30 et 75 mW/cm2, respectivement) et pour la lumière blanche de 0.55 J/cm2 (irradiante 30 mW/cm2). Le taux de photo blanchiment était inversement proportionnel à l'irradiante. Le système de détection des intermédiaires réactifs de l'oxygène DHR123/R123 a démontré une bonne corrélation avec les valeurs seuil pour toutes les conditions d'irradiation utilisées. Conclusions : Nous avons déterminé les doses lumineuses permettant d'épargner 50% des cellules urothéliales saines. L'utilisation d'une faible irradiante associée à des systèmes permettant de mesurer la production d'intermédiaires réactifs de l'oxygène dans les tissus irradiés pourrait améliorer la dosimétrie in vivo et l'efficacité de la thérapie photodynamique. Abstract Background and Objectives: Photodynamic therapy of superficial bladder cancer may cause damages to the normal surrounding bladder wall. Prevention of these is important for bladder healing. We studied the influence of photosensitizes concentration, irradiation parameters and production of reactive oxygen species (ROS) on the photodynamically induced damage in the porcine urothelium in vitro. The aim was to determine the threshold conditions for the cell survival. Methods: Living porcine bladder mucosae were incubated with solution of hexylester of 5-aminolevulinic acid (HAL). The mucosae were irradiated with increasing doses and cell alterations were evaluated by scanning electron microscopy and by Sytox green fluorescence. The urothelial survival score was correlated with Protoporphyrin IX (PpIX) photobleaching and intracellular fluorescence of Rhodamine 123 reflecting the ROS production. Results: The mortality ratio was dependent on PpIX concentration. After 3 hours of incubation, the threshold radiant exposures for blue light were 0.15 and 0.75 J/cm2 (irradiance 30 and 75 mW/cm2, respectively) and for white light 0.55 J/cm2 (irradiance 30 mW/cm2). Photobleaching rate increased with decreasing irradiance. Interestingly, the DHR123/R123 reporter system correlated well with the threshold exposures under all conditions used. Conclusions: we have determined radiant exposures sparing half of normal urothelial cells. We propose that the use of low irradiance combined with systems reporting the ROS production in the irradiated tissue could improve the in vivo dosimetry and optimize the PDT.
Resumo:
Purpose: Heterogeneous results of single studies with photodynamic diagnosis (PDD) in bladder cancer have been reported. A metaanalysis of prospective studies has now been performed. Material and Methods: The effect of PDD in addition to WLC on a) the diagnosis and b) the therapeutic outcome of primary or recurrent non-muscle invasive bladder cancer (NMIBC) investigated by cystoscopy or transurethral resection was analysed. An electronic database search was performed. Trials were included if they prospectively compared WLC with PDD in bladder cancer. Primary endpoints were additional detection rate, residual tumour at second resection and recurrence-free survival. Results: Significantly more tumour-positive patients were detected with PDD in all patients with non-muscle invasive tumours (= 20%) [95% confidence interval (CI): 8 to 35%] and in CIS patients (= 39%) (CI: 23 to 57%). Residual tumour was significantly less often found after PDD (odds ratio 0.28, CI: 0.15 to 0.52, p<0.0001). Recurrence-free survival was significantly higher at 12 and 24months in the PDD groups than in WLC only groups. Conclusions: More bladder tumour-positive patients are detected by PDD. Best results were found in CIS patients. Diagnosis with PDD results in a more complete resection and a longer recurrence-free survival.
Resumo:
CONTEXT: Controversy exists regarding the therapeutic benefit and cost effectiveness of photodynamic diagnosis (PDD) with 5-aminolevulinic acid (5-ALA) or hexyl aminolevulinate (HAL) in addition to white-light cystoscopy (WLC) in the management of non-muscle-invasive bladder cancer (NMIBC). OBJECTIVE: To systematically evaluate evidence regarding the therapeutic benefits and economic considerations of PDD in NMIBC detection and treatment. EVIDENCE ACQUISITION: We performed a critical review of PubMed/Medline, Embase, and the Cochrane Library in October 2012 according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. Identified reports were reviewed according to the Consolidated Standards of Reporting Trials (CONSORT) and Standards for the Reporting of Diagnostic Accuracy Studies (STARD) criteria. Forty-four publications were selected for inclusion in this analysis. EVIDENCE SYNTHESIS: Included reports used 5-ALA (in 26 studies), HAL (15 studies), or both (three studies) as photosensitising agents. PDD increased the detection of both papillary tumours (by 7-29%) and flat carcinoma in situ (CIS; by 25-30%) and reduced the rate of residual tumours after transurethral resection of bladder tumour (TURBT; by an average of 20%) compared to WLC alone. Superior recurrence-free survival (RFS) rates and prolonged RFS intervals were reported for PDD, compared to WLC in most studies. PDD did not appear to reduce disease progression. Our findings are limited by tumour heterogeneity and a lack of NMIBC risk stratification in many reports or adjustment for intravesical therapy use in most studies. Although cost effectiveness has been demonstrated for 5-ALA, it has not been studied for HAL. CONCLUSIONS: Moderately strong evidence exists that PDD improves tumour detection and reduces residual disease after TURBT compared with WLC. This has been shown to improve RFS but not progression to more advanced disease. Further work to evaluate cost effectiveness of PDD is required.
Resumo:
The prognosis of superficial bladder cancer in terms of recurrence and disease progression is related to bladder tumor multiplicity and the presence of concomitant "plane" tumors such as high-grade dysplasia and carcinoma in situ. This study in 33 patients aimed to demonstrate the role of fluorescence cystoscopy in transurethral resection of superficial bladder cancer. The method is based on the detection of protoporphyrin-IX-induced fluorescence in urothelial cancer cells by topical administration of 5-aminolevulinic acid. The sensitivity and the specificity of this procedure on apparently normal mucosa in superficial bladder cancer are estimated to be 82.9% and 81.3%, respectively. Thus, fluorescence cytoscopy is a simple and reliable method for mapping the bladder mucosa, especially in the case of multifocal bladder disease, and it facilitates the screening of occult dysplasia.
Resumo:
Background and Objectives: Precursor lesions of oesophagus adenocarcinoma constitute a clinical dilemma. Photodynamic therapy (PDT) is an effective treatment for this indication, but it is difficult to optimise without an appropriate animal model. For this reason, we assessed the sheep model for PDT in the oesophagus with the photosensitiser meta-(tetra-hydroxyphenyl) chlorin (mTHPC). Materials and Methods: Twelve sheep underwent intravenous mTHPC injection, blood sampling and fluorescence measurements. mTHPC's pharmacokinetics was measured in vivo and in plasma by fluorescence spectroscopy. Biopsies of sheep oesophagus were compared to corresponding human tissue, and the mTHPC's biodistribution was studied under fluorescence microscopy. Finally, the sheep oesophageal mucosa was irradiated, 4 days after mTHPC's injection. Results: Histologically, the sheep and human oesophagus were closely comparable, with the exception of additional fatty tissue in the sheep oesophagus. mTHPC's pharmacokinetics in sheep and human plasmas were similar, with a maximum of concentration in the sheep 10 hours after i.v. injection. mTHPC's pharmacokinetics in vivo reached its maximum after 30-50 hours, then decreased to background levels, as in humans under similar conditions. Two days after injection, mTHPC was mainly distributed in the lamina propria, followed by a penetration into the epithelium. The sheep and human tissue sensitivity to mTHPC PDT was similar. Conclusion: In conclusion, this model showed many similarities with humans as to mTHPC's plasma and tissue pharmacokinetics, and for tissue PDT response, making it suitable to optimise oesophagus PDT. Lasers Surg. Med. 41:643-652,2009. (C) 2009Wiley-Liss,Inc.
Resumo:
alpha-Aminoketones are expected to undergo enolization and subsequent aerobic oxidation yielding oxyradicals and highly toxic a-oxoaldehydes. Our interest has been focused on two endogenous a-aminoketones: 5-aminolevulinic acid (ALA) and aminoacetone (AA), accumulated in porphyrias and diabetes mellitus, respectively, and recently implicated as contributing sources of oxyradicals in these diseases. The final oxidation product of ALA, 4,5-dioxovaleric acid (DOVA), is able to alkylate DNA guanine moieties and expected to promote protein cross-linking. Methylglyoxal (MG), the final oxidation product of AA, is also highly cytotoxic and able to aggregate protein molecules. This review covers chemical and biochemical aspects of these alpha-aminoketones and their putative roles in the oxidative stress associated with porphyric disorders and diabetes.
Resumo:
Photodynamic therapy (PDT) mediated by oxidative stress causes direct tumor cell damage as well as microvascular injury. To improve this treatment new photosensitizers are being synthesized and tested. We evaluated the effects of PDT with 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin (TMPP) and its zinc complex (ZnTMPP) on tumor levels of malondialdehyde (MDA), reduced glutathione (GSH) and cytokines, and on the activity of caspase-3 and metalloproteases (MMP-2 and -9) and attempted to correlate them with the histological alterations of tumors in 3-month-old male Wistar rats, 180 ± 20 g, bearing Walker 256 carcinosarcoma. Rats were randomly divided into five groups: group 1, ZnTMPP+irradiation (IR) 10 mg/kg body weight; group 2, TMPP+IR 10 mg/kg body weight; group 3, 5-aminolevulinic acid (5-ALA+IR) 250 mg/kg body weight; group 4, control, no treatment; group 5, only IR. The tumors were irradiated for 15 min with red light (100 J/cm², 10 kHz, 685 nm) 24 h after drug administration. Tumor tissue levels of MDA (1.1 ± 0.7 in ZnTMPP vs 0.1 ± 0.04 nmol/mg protein in control) and TNF-α (43.5 ± 31.2 in ZnTMPP vs 17.3 ± 1.2 pg/mg protein in control) were significantly higher in treated tumors than in controls. Higher caspase-3 activity (1.9 ± 0.9 in TMPP vs 1.1 ± 0.6 OD/mg protein in control) as well as the activation of MMP-2 (P < 0.05) were also observed in tumors. These parameters were correlated (Spearman correlation, P < 0.05) with the histological alterations. These results suggest that PDT activates the innate immune system and that the effects of PDT with TMPP and ZnTMPP are mediated by reactive oxygen species, which induce cell membrane damage and apoptosis.
Resumo:
The progression to end-stage renal failure is independent of the initial pathogenic mechanism. Metabolic acidosis is a common consequence of chronic renal failure that results from inadequate ammonium excretion and decreased tubular bicarbonate reabsorption. Protoporphyrin IX (PpIX) is the immediate metabolic precursor of the heme molecule. The purpose of this study was to evaluate the levels of erythrocytes protoporphyrin IX at an animal model during progressive renal disease. A total of 36 eight-week-old male Wistar rats were divided into six groups: Normal, 4 and 8 weeks after 5/6 nephrectomy (NX). Renal function was evaluated by creatinine clearance and plasma creatinine levels. The autofluorescence of erythrocytes porphyrin of healthy and NX rats was analyzed using fluorescence spectroscopy. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and NX rats autofluorescence shape occurred in the 600-700 nm spectral region. A correlation was observed between emission band intensity at 635 nm and progression of renal disease.
Resumo:
Photodynamic therapy (PDT) using a haematoporphyrin derivative (Photogem (R), General Physics Institute and clustes Ltda) as photosensitizer and light emitting diodes (LEDs) as the light source was evaluated in 12 cats with cutaneous squamous cell carcinoma. Lesions were illuminated with LEDs, (300 J/cm for 30 min) 24 h after the administration of the photosensitizer. Clinical responses were classified as complete disappearance of the tumour with total re-epithelialization; partial response (a reduction greater than 50%); and no response (less than 50% reduction). Tumours localized to the pinna treated with one (n = 3) or two (n = 4) applications of PDT yielded no response. Highly invasive tumours of the nose and nasal planum also showed no response, after two treatments (n = 2). A combination of PDT and surgery was performed in three cases. Two cats showed partial response and one complete response with one application of therapy 30 days after nasal surgery. Small and noninfiltrative lesions (n = 3) of the nasal planum showed a PR with one application (n = 2) and a CR with two applications (n = 1). This study shows that PDT using Photogem (R) and LEDs can provide local control of low-grade feline squamous cell carcinoma. The addition of PDT to surgery in more invasive cases may help prevent recurrence.