951 resultados para 41 kDa protein


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, several proteins have been identified that are related in their sequence to the p53 tumor-suppressor protein. One of these proteins, which is termed p73, exhibits sequence homology to the p53 transcriptional activation, DNA binding, and oligomerization domains. The adenovirus E1B 55-kDa protein, the adenovirus E4orf6 protein, and SV40 T antigen each can bind to p53 and inhibit p53 function. Here we demonstrate that the adenovirus E4orf6 protein, but not the E1B 55-kDa protein or T antigen, interacts with p73. The E4orf6 protein inhibits p73-mediated transcriptional activation and cell killing in a manner similar to its effect on p53. Thus, only a subset of viral oncoproteins that antagonize p53 function also interacts with the related p73 protein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During evolution, chloroplasts have relinquished the majority of their genes to the nucleus. The products of transferred genes are imported into the organelle with the help of an import machinery that is distributed across the inner and outer plastid membranes. The evolutionary origin of this machinery is puzzling because, in the putative predecessors, the cyanobacteria, the outer two membranes, the plasma membrane, and the lipopolysaccharide layer lack a functionally similar protein import system. A 75-kDa protein-conducting channel in the outer envelope of pea chloroplasts, Toc75, shares ≈22% amino acid identity to a similarly sized protein, designated SynToc75, encoded in the Synechocystis PCC6803 genome. Here we show that SynToc75 is located in the outer membrane (lipopolysaccharide layer) of Synechocystis PCC6803 and that SynToc75 forms a voltage-gated, high conductance channel with a high affinity for polyamines and peptides in reconstituted liposomes. These findings suggest that a component of the chloroplast protein import system, Toc75, was recruited from a preexisting channel-forming protein of the cyanobacterial outer membrane. Furthermore, the presence of a protein in the chloroplastic outer envelope homologous to a cyanobacterial protein provides support for the prokaryotic nature of this chloroplastic membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The small GTPase Rab4 is implicated in endocytosis in all cell types, but also plays a specific role in some regulated processes. To better understand the role of Rab4 in regulation of vesicular trafficking, we searched for an effector(s) that specifically recognizes its GTP-bound form. We cloned a ubiquitous 69-kDa protein, Rabip4, that behaves as a Rab4 effector in the yeast two-hybrid system and in the mammalian cell. Rabip4 contains two coiled-coil domains and a FYVE-finger domain. When expressed in CHO cells, Rabip4 is present in early endosomes, because it is colocated with endogenous Early Endosome Antigen 1, although it is absent from Rab11-positive recycling endosomes and Rab-7 positive late endosomes. The coexpression of Rabip4 with active Rab4, but not with inactive Rab4, leads to an enlargement of early endosomes. It strongly increases the degree of colocalization of markers of sorting (Rab5) and recycling (Rab11) endosomes with Rab4. Furthermore, the expression of Rabip4 leads to the intracellular retention of a recycling molecule, the glucose transporter Glut 1. We propose that Rabip4, an effector of Rab4, controls early endosomal traffic possibly by activating a backward transport step from recycling to sorting endosomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is still a lack of information on the specific characteristics of DNA-binding proteins from hyperthermophiles. Here we report on the product of the gene orf56 from plasmid pRN1 of the acidophilic and thermophilic archaeon Sulfolobus islandicus. orf56 has not been characterised yet but low sequence similarily to several eubacterial plasmid-encoded genes suggests that this 6.5 kDa protein is a sequence-specific DNA-binding protein. The DNA-binding properties of ORF56, expressed in Escherichia coli, have been investigated by EMSA experiments and by fluorescence anisotropy measurements. Recombinant ORF56 binds to double-stranded DNA, specifically to an inverted repeat located within the promoter of orf56. Binding to this site could down-regulate transcription of the orf56 gene and also of the overlapping orf904 gene, encoding the putative initiator protein of plasmid replication. By gel filtration and chemical crosslinking we have shown that ORF56 is a dimeric protein. Stoichiometric fluorescence anisotropy titrations further indicate that ORF56 binds as a tetramer to the inverted repeat of its target binding site. CD spectroscopy points to a significant increase in ordered secondary structure of ORF56 upon binding DNA. ORF56 binds without apparent cooperativity to its target DNA with a dissociation constant in the nanomolar range. Quantitative analysis of binding isotherms performed at various salt concentrations and at different temperatures indicates that approximately seven ions are released upon complex formation and that complex formation is accompanied by a change in heat capacity of –6.2 kJ/mol. Furthermore, recombinant ORF56 proved to be highly thermostable and is able to bind DNA up to 85°C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A general strategy is described for designing proteins that self assemble into large symmetrical nanomaterials, including molecular cages, filaments, layers, and porous materials. In this strategy, one molecule of protein A, which naturally forms a self-assembling oligomer, An, is fused rigidly to one molecule of protein B, which forms another self-assembling oligomer, Bm. The result is a fusion protein, A-B, which self assembles with other identical copies of itself into a designed nanohedral particle or material, (A-B)p. The strategy is demonstrated through the design, production, and characterization of two fusion proteins: a 49-kDa protein designed to assemble into a cage approximately 15 nm across, and a 44-kDa protein designed to assemble into long filaments approximately 4 nm wide. The strategy opens a way to create a wide variety of potentially useful protein-based materials, some of which share similar features with natural biological assemblies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A human cDNA encoding an 841-aa guanine nucleotide-exchange protein (GEP) for ADP-ribosylation factors (ARFs), named ARF-GEP100, which contains a Sec7 domain, a pleckstrin homology (PH)-like domain, and an incomplete IQ-motif, was identified. On Northern blot analysis of human tissues, a ≈8-kb mRNA that hybridized with an ARF-GEP100 cDNA was abundant in peripheral blood leukocytes, brain, and spleen. ARF-GEP100 accelerated [35S]GTPγS binding to ARF1 (class I) and ARF5 (class II) 2- to 3-fold, and to ARF6 (class III) ca. 12-fold. The ARF-GEP100 Sec7 domain contains Asp543 and Met555, corresponding to residues associated with sensitivity to the inhibitory effect of the fungal metabolite brefeldin A (BFA) in yeast Sec7, but also Phe535 and Ala536, associated with BFA-insensitivity. The PH-like domain differs greatly from those of other ARF GEPs in regions involved in phospholipid binding. Consistent with its structure, ARF-GEP100 activity was not affected by BFA or phospholipids. After subcellular fractionation of cultured T98G human glioblastoma cells, ARF6 was almost entirely in the crude membrane fraction, whereas ARF-GEP100, a 100-kDa protein detected with antipeptide antibodies, was cytosolic. On immunofluorescence microscopy, both proteins had a punctate pattern of distribution throughout the cells, with apparent colocalization only in peripheral areas. The coarse punctate distribution of EEA-1 in regions nearer the nucleus appeared to coincide with that of ARF-GEP100 in those areas. No similar coincidence of ARF-GEP100 with AP-1, AP-2, catenin, LAMP-1, or 58K was observed. The new human BFA-insensitive GEP may function with ARF6 in specific endocytic processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A number of pathogenic, Gram-negative bacteria are able to secrete specific proteins across three membranes: the inner and outer bacterial membrane and the eukaryotic plasma membrane. In the pathogen Yersinia enterocolitica, the primary structure of the secreted proteins as well as of the components of the secretion machinery, both plasmid-encoded, is known. However, the mechanism of protein translocation is largely unknown. Here we show that Y. enterocolitica polymerizes a 6-kDa protein of the secretion machinery into needles that are able to puncture the eukaryotic plasma membrane. These needles form a conduit for the transport of specific proteins from the bacterial to the eukaryotic cytoplasm, where they exert their cytotoxic activity. In negatively stained electron micrographs, the isolated needles were 60–80 nm long and 6–7 nm wide and contained a hollow center of about 2 nm. Our data indicate that it is the polymerization of the 6-kDa protein into these needles that provides the force to perforate the eukaryotic plasma membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Melanoma inhibitory activity (MIA) is a 12-kDa protein that is secreted from both chondrocytes and malignant melanoma cells. MIA has been reported to have effects on cell growth and adhesion, and it may play a role in melanoma metastasis and cartilage development. We report the 1.4-Å crystal structure of human MIA, which consists of an Src homology 3 (SH3)-like domain with N- and C-terminal extensions of about 20 aa each. The N- and C-terminal extensions add additional structural elements to the SH3 domain, forming a previously undescribed fold. MIA is a representative of a recently identified family of proteins and is the first structure of a secreted protein with an SH3 subdomain. The structure also suggests a likely protein interaction site and suggests that, unlike conventional SH3 domains, MIA does not recognize polyproline helices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dystrobrevin is a component of the dystrophin-associated protein complex and has been shown to interact directly with dystrophin, α1-syntrophin, and the sarcoglycan complex. The precise role of α-dystrobrevin in skeletal muscle has not yet been determined. To study α-dystrobrevin's function in skeletal muscle, we used the yeast two-hybrid approach to look for interacting proteins. Three overlapping clones were identified that encoded an intermediate filament protein we subsequently named desmuslin (DMN). Sequence analysis revealed that DMN has a short N-terminal domain, a conserved rod domain, and a long C-terminal domain, all common features of type 6 intermediate filament proteins. A positive interaction between DMN and α-dystrobrevin was confirmed with an in vitro coimmunoprecipitation assay. By Northern blot analysis, we find that DMN is expressed mainly in heart and skeletal muscle, although there is some expression in brain. Western blotting detected a 160-kDa protein in heart and skeletal muscle. Immunofluorescent microscopy localizes DMN in a stripe-like pattern in longitudinal sections and in a mosaic pattern in cross sections of skeletal muscle. Electron microscopic analysis shows DMN colocalized with desmin at the Z-lines. Subsequent coimmunoprecipitation experiments confirmed an interaction with desmin. Our findings suggest that DMN may serve as a direct linkage between the extracellular matrix and the Z-discs (through plectin) and may play an important role in maintaining muscle cell integrity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sarA and agr). The sar (Staphylococcus accessory regulator) locus is composed of three overlapping transcripts (sarA P1, P3, and P2, transcripts initiated from the P1, P3, and P2 promoters, respectively), all encoding the 124-aa SarA protein. The level of SarA, the major regulatory protein, is partially controlled by the differential activation of the sarA promoters. We previously partially purified a 13.6-kDa protein, designated SarR, that binds to the sarA promoter region to down-modulate sarA transcription from the P1 promoter and subsequently SarA expression. SarR shares sequence similarity to SarA, and another SarA homolog, SarS. Here we report the 2.3 Å-resolution x-ray crystal structure of the dimeric SarR-MBP (maltose binding protein) fusion protein. The structure reveals that the SarR protein not only has a classic helix–turn–helix module for DNA binding at the major grooves, but also has an additional loop region involved in DNA recognition at the minor grooves. This interaction mode could represent a new functional class of the “winged helix” family. The dimeric SarR structure could accommodate an unusually long stretch of ≈27 nucleotides with two or four bending points along the course, which could lead to the bending of DNA by 90° or more, similar to that seen in the catabolite activator protein (CAP)–DNA complex. The structure also demonstrates the molecular basis for the stable dimerization of the SarR monomers and possible motifs for interaction with other proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mosquito (Aedes aegypti) vitellogenin receptor (AaVgR) is a large membrane-bound protein (214 kDa when linearized) that mediates internalization of vitellogenin, the major yolk-protein precursor, by oocytes during egg development. We have cloned and sequenced two cDNA fragments encompassing the entire coding region of AaVgR mRNA, to our knowledge the first insect VgR sequence to be reported. The 7.3-kb AaVgR mRNA is present only in female germ-line cells and is abundant in previtellogenic oocytes, suggesting that the AaVgR gene is expressed early in oocyte differentiation. The deduced amino acid sequence predicts a 202.7-kDa protein before posttranslational processing. The AaVgR is a member of the low density lipoprotein receptor superfamily, sharing significant homology with the chicken (Gallus gallus) VgR and particularly the Drosophila melanogaster yolk protein receptor, in spite of a very different ligand for the latter. Distance-based phylogenetic analyses suggest that the insect VgR/yolk protein receptor lineage and the vertebrate VgR/low density lipoprotein receptor lineage diverged before the bifurcation of nematode and deuterostome lines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the induction of long-term potentiation (LTP) in hippocampal slices adenosine triphosphate (ATP) is secreted into the synaptic cleft, and a 48 kDa/50 kDa protein duplex becomes phosphorylated by extracellular ATP. All the criteria required as evidence that these two proteins serve as principal substrates of ecto-protein kinase activity on the surface of hippocampal pyramidal neurons have been fulfilled. This phosphorylation activity was detected on the surface of pyramidal neurons assayed after synaptogenesis, but not in immature neurons nor in glial cells. Addition to the extracellular medium of a monoclonal antibody termed mAb 1.9, directed to the catalytic domain of protein kinase C (PKC), inhibited selectively this surface protein phosphorylation activity and blocked the stabilization of LTP induced by high frequency stimulation (HFS) in hippocampal slices. This antibody did not interfere with routine synaptic transmission nor prevent the initial enhancement of synaptic responses observed during the 1-5 min period immediately after the application of HFS (the induction phase of LTP). However, the initial increase in the slope of excitatory postsynaptic potentials, as well as the elevated amplitude of the population spike induced by HFS, both declined gradually and returned to prestimulus values within 30-40 min after HFS was applied in the presence of mAb 1.9. A control antibody that binds to PKC but does not inhibit its activity had no effect on LTP. The selective inhibitory effects observed with mAb 1.9 provide the first direct evidence of a causal role for ecto-PK in the maintenance of stable LTP, an event implicated in the process of learning and the formation of memory in the brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A purine-rich splicing enhancer from a constitutive exon has been shown to shift the alternative splicing of calcitonin/CGRP pre-mRNA in vivo. Here, we demonstrate that the native repetitive GAA sequence comprises the optimal enhancer element and specifically binds a saturable complex of proteins required for general splicing in vitro. This complex contains a 37-kDa protein that directly binds the repetitive GAA sequence and SRp40, a member of the SR family of non-snRNP splicing factors. While purified SR proteins do not stably bind the repetitive GAA element, exogenous SR proteins become associated with the GAA element in the presence of nuclear extracts and stimulate GAA-dependent splicing. These results suggest that repetitive GAA sequences enhance splicing by binding a protein complex containing a sequence-specific RNA binding protein and a general splicing activator that, in turn, recruit additional SR proteins. This type of mechanism resembles the tra/tra-2-dependent recruitment of SR proteins to the Drosophila doublesex alternative splicing regulatory element.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the molecular cloning of import intermediate associated protein (IAP) 100, a 100-kDa protein of the chloroplast protein import machinery of peas. IAP100 contains two potential alpha-helical transmembrane segments and also behaves like an integral membrane protein. It was localized to the inner chloroplast envelope membrane. Immunoprecipitation experiments using monospecific anti-IAP100 antibodies and a nonionic detergent-generated chloroplast lysate gave the following results. (i) The four integral membrane proteins of the outer chloroplast import machinery were not coprecipitated with IAP100 indicating that the inner and outer membrane import machineries are not coupled in isolated chloroplasts. (ii) the major protein that coprecipitated with IAP100 was identified as stromal chaperonin 60 (cpn60); the association of IAP100 and cpn60 was specific and was abolished when immunoprecipitation was carried out in the presence of ATP. (iii) In a lysate from chloroplasts that had been preincubated for various lengths of time in an import reaction with radiolabeled precursor (pS) of the small subunit of Rubisco, we detected coimmunoprecipitation of IAP100, cpn60, and the imported mature form (S) of precursor. Relative to the time course of import, coprecipitation of S first increased and then decreased, consistent with a transient association of the newly imported S with the chaperonin bound to IAP100. These data suggest that IAP100 serves in recruiting chaperonin for folding of newly imported proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Approximately 40% of diffuse large cell lymphoma are associated with chromosomal translocations that deregulate the expression of the BCL6 gene by juxtaposing heterologous promoters to the BCL-6 coding domain. The BCL6 gene encodes a 95-kDa protein containing six C-terminal zinc-finger motifs and an N-terminal POZ domain, suggesting that it may function as a transcription factor. By using a DNA sequence selected for its ability to bind recombinant BCL-6 in vitro, we show here that BCL-6 is present in DNA-binding complexes in nuclear extracts from various B-cell lines. In transient transfectin experiments, BCL6 can repress transcription from promoters linked to its DNA target sequence and this activity is dependent upon specific DNA-binding and the presence of an intact N-terminal half of the protein. We demonstrate that this part of the BCL6 molecule contains an autonomous transrepressor domain and that two noncontiguous regions, including the POZ motif, mediate maximum transrepressive activity. These results indicate that the BCL-6 protein can function as a sequence-specific transcriptional repressor and have implications for the role of BCL6 in normal lymphoid development and lymphomagenesis.