979 resultados para 4-Aryl-3
Resumo:
Gas permeability coefficients of a series of aromatic polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) with various aromatic diamines, to H-2, O-2 and N-2 have been measured under 7 atm and at the temperature range 30-100 degrees C. A significant change in the permeability and permselectivity resulting from the systematic variation in chemical structure of the polyetherimides was found. Among the polyetherimides, that were prepared from phenylenediamine and methyl substituted phenylenediamines, the increase of permeability is accompanied by a decrease of permselectivity. The polyetherimides that were prepared from 3,5-diaminobenzoic esters have lower permselectivity than the others. However, the polyetherimide from 3,5-diaminobenzoic acid possesses much higher permselectivity than the others due to cross-linking. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Gas permeability coefficients of a series of aromatic polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and various aromatic diamines, to H-2, CO2, O-2, N-2 and CH4 have been measured under 7 atm pressure and over the temperature range 30-150 degrees C. A significant change in permeability and permselectivity, which resulted from a systematic variation in chemical structure of the polyetherimides, was found. Generally, increases in permeability of the polyetherimides are accompanied by decreases in permselectivity. The order of decrease of the permeability coefficients is as follows: HQDPA-IPDA > HQDPA-DDS > HQDPA-MDA > HQDPA-ODA > HQDPA-DABP > HQDPA-BZD. However, HQDPA-DMoBZD and HQDPA-DMoMDA, with bulky methoxy side-groups on the aromatic rings of the diamine residue, display both high permeability coefficients and high permselectivity. The favourable gas separation property, excellent thermal and chemical stability, and high mechanical strength make HQDPA-DMoBZD and HQDPA-DMoMDA promising candidates for membrane-based gas separation applications.
Resumo:
Gas permeability coefficients of a series of aromatic polyetherimides prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and four (methylene dianiline)s with a methyl side group to H-2, CO2, O-2, N-2, and CH4 were measured under 7 atm and within a temperature range from 30 to 150 degrees C. The gas permeabilities and permselectivities of these polymers were compared with those of the HQDPA-based polyetherimides from methylene dianiline (MDA) and isopropylidene dianiline (IPDA). The number and position of the methyl side groups on the benzene rings of the diamine residues strongly affect the gas permeabilities and permselectivities of the HQDPA-based polyetherimides. The gas permeability of the polyetherimide progressively increases with an increase in the number of the methyl side groups. Both the gas permeability and permselectivity of the polyetherimides with methyl side groups are higher than those of HQDPA-MDA. The polyetherimide prepared from 3,3'-dimethyl 4,4'-methylene dianiline (DMMDA1) possesses both higher permeability and permselectivity than the polyetherimides prepared from 2,2'-dimethyl 4,4'-methylene dianiline (DMMDA2). However, two of the polyetherimides prepared 2,2',3,3'-tetramethyl 4,4'-methylene dianiline (TMMDA1) or 2,2', 5,5'-tetramethyl 4,4'-methylene dianiline (TMMDA2) possess almost the same gas permeability and permselectivity.
Resumo:
The interaction of [(C(5)H(4)R)(2)NdCl.2LiCl] (R = H, Bu(t)) with one equivalent of Li[(CH2)(CH2)PPh(2)] in refluxing tetrahydrofuran gave the purplish-blue complex [(C(5)H(4)R)(3)NdCH2P(Me)Ph(2)] in 50% yield. The compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. Variable temperature P-31{H-1} NMR spectroscopy indicated the existence of the following equilibrium: [(C(5)H(4)R)(3)NdCH2P(Me)Ph(2)] + THF reversible arrow (C(5)H(4)R)(3)Nd(THF) + CH2=P(Me)Ph(2). At room temperature, the exchange between the coordinated and free ylide ligand is slow on the NMR time scale.
Resumo:
The crystal structure of the title compound, C19H15FN6OS, is stabilized by a weak intermolecular C-(HN)-N-... hydrogen-bond interaction.
Resumo:
In the title compound, C12H10ClN7S, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 73.57 (3) and 46.65 (2)degrees, respectively. Inter-and intramolcular hydrogen bonds and pi-pi stacking interactions stabilize the structure.
Resumo:
In the title compound, C12H10FN7S, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 71.94 (3) and 40.10 (2)degrees, respectively. Inter- and intramolecular hydrogen-bond and pi-pi stacking interactions stabilize the structure.
Resumo:
The IR spectrum of 4-methyl-3-penten-2-one is interpreted with the aid of normal coordinate calculations within the Onsager self-consistent reaction field (SCRF) model, using a density functional theory (DFT) method at the Becke3LYP/6-31G* level. The solvent effects on the geometry, energy, dipole moment, and vibrational frequencies of 4-methyl-3-penten-2-one in the solution and in the liquid phase are calculated using the Onsager SCRF model. The calculated vibrational frequencies in the liquid-phase are in good agreement with the experimental values. The solvent reaction field has generally weak influence. For the two main bands of C=C and C=O mixed vibrational modes, small frequency shifts (5-6 cm(-1)), but relatively large changes in IR intensities (up to 101 km mol(-1) in the liquid phase) are found. (C) 1999 Elsevier Science BV. All rights reserved.
Resumo:
The objective of this project was to prepare a range of 4-substituted 3-(2H)-furanones, and to investigate the relationship between their molecular structures and photoluminescence properties. The effects of substituents and conjugated linker unit were also investigated. After generation of the key 3(2H)-furanone heterocycle, extension of the conjugated framework at the C-4 position was achieved through Pd(0)-catalysed coupling reactions. Chapter one of the thesis comprises a review of the relavent literature and is split into three sections. These include information about the prevalence of 3-(2H)-furanones as natural products and synthetic routes to 3-(2H)-furanones in general. The synthetic routes are divided according to the synthetic precursor employed. The final section of chapter one outlines the fundamental principles and application of photoluminescence to organic compounds in general. Chapter two contains the results of the research achieved in the course of this work and a discussion of the findings. Two routes were successfully employed to generate 4-unsubstituted 3-(2H)-furanone moieties: (i) base induced cyclisation of hydroxyenones and (ii) isoxazole chemistry. A number of methods which proved ineffective in the production of furanones with the desired substitution pattern are also detailed. The majority of this study was focused on the introduction of substituents at the C-4 position of the 3-(2H)-furanone ring. This was achieved through the use of Sonogashira and Suzuki cross coupling protocols for Pd(0) catalysed C-C bond formation. The further functionalisation of some compounds was performed using transfer hydrogenation and “click chemistry” methodologies. Finally, the photophysical properties of 3-(2H)-furanones prepared in this project are discussed and the effect of substitution patterns in a complementary “push push” and “push pull” manner have also been investigated. All the experimental data and details of the synthetic methods employed, for the compounds prepared during the course of this research is contained in chapter three together with the spectroscopic and analytical properties of the compounds prepared.