914 resultados para 3D model


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fruit of certain mango cultivars (e.g., 'Honey Gold') can develop blush on their skin. Skin blush due to red pigmentation is from the accumulation of anthocyanins. Anthocyanin biosynthesis is related to environmental determinants, including light received by the fruit. It has been observed that mango skin blush varies with position in the tree canopy. However, little investigation into this spatial relationship has been conducted. The objective of this preliminary study was to describe a 'Honey Gold' mango tree by capturing its three-dimensional (3D) architecture. A light path tracing model QuasiMC was then used to predict light received by fruit. The use of this 3D model was to better understand the relationship between mango fruit skin blush and fruit position in the canopy. The digitised mango tree mimicked the real tree at a high level of detail. Observations on mango skin blush distribution supported the proposition that sunlight exposure is an absolute requirement for anthocyanin development. No blush development occurred on shaded skin. It was affirmed that 3D mapping could allow for virtual experiments. For example, for virtual canopy thinning (e.g., 'window pruning') to admit more sunlight with a view to improve fruit blush. Improvements to 3D modelling of mango skin blush could focus on increasing accuracy, e.g., measurement of leaf light reflectance and transmission and the inclusion of the effect shading by branches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Apresenta-se uma metodologia para caracterizar a transmissividade dos Granitos Hercínicos e Metasedimentos do Complexo Xisto-Grauváquico do maciço envolvente e subjacente à antiga área mineira de urânio da Quinta do Bispo. Inicia-se com a modelação das litologias e grau de alteração a que se segue a simulação condicional da densidade de fracturação. No final, a densidade de fracturação é convertida num modelo 3D de transmissividade por relação com os resultados dos ensaios de bombagem. The purpose of this work is to present a methodology for characterizing the transmissivity of the Hercynian granites and complex schist–greywacke metasediment rocks surrounding and underlying the old Quinta do Bispo uranium mining site. The methodology encompasses modelling of lithologies and weathering levels, followed by a conditional simulation of fracture density. Fracture density is then converted into a 3D model of transmissivity via a relationship with pumping tests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Teknova have 2D steady-state models of the calciner but wish, in the long term, to have a 3D model that can also cover unsteady conditions, and can can model the loss of axisymmetry that someties occurs. Teknova also wish to understand the processes happening around the tip of the upper electrode, in particular the formation of a lip on it and the the shape of the empty region below it. The Study Group proposed potential models for the degree of graphitization, and for the granular flow. Also the Study Group considered the upper electrode in detail. The proposed model for the lip formation is by sublimation of carbon from the hottest parts of the furnace with redeposition in the region around the electrode, which may stick particles onto the electrode surface. In this model the region below the electrode would be a void, roughly a vertex-down conical cavity. The electric field near the lower rim of the electrode will then have a singularity and so the most intense heating of the charge will be around the rim. We conjecture that the reason why the lower electrode lasts so much longer than the upper is that it is not adjacent to a cavity like this, and therefore does not have a singularity in the field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMM stands for 'Agents for Improved Maintenance Management.' The AIMM system is a prototype tool that has developed the state of the art life cycle modelling of buildings through the linking of a 3D model with maintenance data to allow both the facility manager and the designer to gain access to building maintenance information and knowledge that is currently inaccessible. AIMM integrates data mining agents into the maintenance process to produce timely data for the facility manager on the effects of different maintenance regimes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lamb waves propagation in composite materials has been studied extensively since it was first observed in 1982. In this paper, we show a procedure to simulate the propagation of Lamb waves in composite laminates using a two-dimensional model in ANSYS. This is done by simulating the Lamb waves propagating along the plane of the structure in the form of a time dependent force excitation. In this paper, an 8-layered carbon reinforced fibre plastic (CRFP) is modelled as transversely isotropic and dissipative medium and the effect of flaws is analyzed with respect to the defects induced between various layers of the composite laminate. This effort is the basis for the future development of a 3D model for similar applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article describes a project to unwrap an ancient Egyptian mummy using X-ray computed tomography (CT). About 600 X-ray CT images were obtained through the mummified body of a female named Tjetmutjengebtiu (or Jeni for short), who was a singer in the great temple of Karnak in Egypt during the 22nd dynasty (c. 945-715 BC). The X-ray CT images reveal details of the remains of body organs, wrappings and jewellery. 3D reconstructions of Jeni’s teeth suggest that she was probably only around 20 years old when she died, although the cause of death cannot be ascertained from the CT scans. The CT images were used to build a 3D model of Jeni’s head which enabled an artist to paint a picture of what Jeni may have looked like during life. A PowerPoint presentation and movie clips are provided as supplementary material that may be useful for teaching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Localisation of an AUV is challenging and a range of inspection applications require relatively accurate positioning information with respect to submerged structures. We have developed a vision based localisation method that uses a 3D model of the structure to be inspected. The system comprises a monocular vision system, a spotlight and a low-cost IMU. Previous methods that attempt to solve the problem in a similar way try and factor out the effects of lighting. Effects, such as shading on curved surfaces or specular reflections, are heavily dependent on the light direction and are difficult to deal with when using existing techniques. The novelty of our method is that we explicitly model the light source. Results are shown of an implementation on a small AUV in clear water at night.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glycosyl hydrolase family 1 beta-glucosidases are important enzymes that serve many diverse functions in plants including defense, whereby hydrolyzing the defensive compounds such as hydroxynitrile glucosides. A hydroxynitrile glucoside cleaving beta-glucosidase gene (Llbglu1) was isolated from Leucaena leucocephala, cloned into pET-28a (+) and expressed in E. coli BL21 (DE3) cells. The recombinant enzyme was purified by Ni-NTA affinity chromatography. The optimal temperature and pH for this beta-glucosidase were found to be 45 A degrees C and 4.8, respectively. The purified Llbglu1 enzyme hydrolyzed the synthetic glycosides, pNPGlucoside (pNPGlc) and pNPGalactoside (pNPGal). Also, the enzyme hydrolyzed amygdalin, a hydroxynitrile glycoside and a few of the tested flavonoid and isoflavonoid glucosides. The kinetic parameters K (m) and V (max) were found to be 38.59 mu M and 0.8237 mu M/mg/min for pNPGlc, whereas for pNPGal the values were observed as 1845 mu M and 0.1037 mu M/mg/min. In the present study, a three dimensional (3D) model of the Llbglu1 was built by MODELLER software to find out the substrate binding sites and the quality of the model was examined using the program PROCHEK. Docking studies indicated that conserved active site residues are Glu 199, Glu 413, His 153, Asn 198, Val 270, Asn 340, and Trp 462. Docking of rhodiocyanoside A with the modeled Llbglu1 resulted in a binding with free energy change (Delta G) of -5.52 kcal/mol on which basis rhodiocyanoside A could be considered as a potential substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study the cooling performance due to air flow and aerodynamics of the Formula Student open wheeled race car has been investigated and optimized with the help of CFD simulations and experimental validation. The race car in context previously suffered from overheating problems. Flow analysis was carried out based on the detailed race car 3D model (NITK Racing 2012 formula student race car). Wind tunnel experiments were carried out on the same. The results obtained from the computer simulations are compared with experimental results obtained from wind tunnel testing of the full car. Through this study it was possible to locate the problem areas and hence choose the best configuration for the cooling duct. The CFD analysis helped in calculating the mass flow rate, pressure and velocity distribution for different velocities of the car which is then used to determine the heat dissipated by the radiator. Area of flow separation could be visualized and made sure smooth airflow into the radiator core area. This significantly increased the cooling performance of the car with reduction in drag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Size-dependent elastic constants are investigated theoretically with reference to a nanoscale single-crystal thin film. A three-dimensional _3D_ model is presented with the relaxation on the surface of the nanofilm taken into consideration. The constitutive relation of the 3D model is derived by using the energy approach, and analytical expressions for the four nonzero elastic constants of the nanofilm are obtained. The size effects of the four elastic constants are then discussed, and the dependence of these elastic constants on the surface relaxation and the ambiguity in the definition of the thickness of the nanofilm are also analyzed. In addition, the elastic moduli of the nanofilm in two kinds of plane problem are obtained and discussed in the case of a special boundary condition.