1000 resultados para 379.8
Resumo:
Background The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. Methods We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. Results We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin β8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. Conclusions These results reveal that EphB4 regulates integrin β8 expression and that integrin β8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin β8 may be a new treatment strategy for prostate cancer.
Resumo:
Aim The aim of this study was to analyse the effect of an 8-week multimodal physiotherapy programme (MPP), integrating physical land-based therapeutic exercise (TE), adapted swimming and health education, as a treatment for patients with chronic non-specific neck pain (CNSNP), on disability, general health/mental states and quality of life. Methods 175 CNSNP patients from a community-based centre were recruited to participate in this prospective study. Intervention: 60-minute session (30 minutes of land-based exercise dedicated to improving mobility, motor control, resistance and strengthening of the neck muscles, and 30 minutes of adapted swimming with aerobic exercise keeping a neutral neck position using a snorkel). Health education was provided using a decalogue on CNSNP and constant repetition of brief advice by the physiotherapist during the supervision of the exercises in each session. Study outcomes: primary: disability (Neck Disability Index); secondary: physical and mental health states and quality of life of patients (SF-12 and EuroQoL-5D respectively). Differences between baseline data and that at the 8-week follow-up were calculated for all outcome variables. Results Disability showed a significant improvement of 24.6% from a mean (SD) of 28.2 (13.08) at baseline to 16.88 (11.62) at the end of the 8-week intervention. All secondary outcome variables were observed to show significant, clinically relevant improvements with increase ranges between 13.0% and 16.3% from a mean of 0.70 (0.2) at baseline to 0.83 (0.2), for EuroQoL-5D, and from a mean of 40.6 (12.7) at baseline to 56.9 (9.5), for mental health state, at the end of the 8-week intervention. Conclusion After 8 weeks of a MPP that integrated land-based physical TE, health education and adapted swimming, clinically-relevant and statistically-significant improvements were observed for disability, physical and mental health states and quality of life in patients who suffer CNSNP. The clinical efficacy requires verification using a randomised controlled study design.
Resumo:
Idiomarina sp. strain 28-8 is an aerobic, Gram-negative, flagellar bacterium isolated from the bodies of ark shells (Scapharca broughtonii) collected from underwater sediments in Gangjin Bay, South Korea. Here, we present the draft genome sequence of Idiomarina sp. 28-8 (2,971,606 bp, with a G+C content of 46.9%), containing 2,795 putative coding sequences.
Early mathematical learning: Number processing skills and executive function at 5 and 8 years of age
Resumo:
This research investigated differences and associations in performance in number processing and executive function for children attending primary school in a large Australian metropolitan city. In a cross-sectional study, performance of 25 children in the first full-time year of school, (Prep; mean age = 5.5 years) and 21 children in Year 3 (mean age = 8.5 years) completed three number processing tasks and three executive function tasks. Year 3 children consistently outperformed the Prep year children on measures of accuracy and reaction time, on the tasks of number comparison, calculation, shifting, and inhibition but not on number line estimation. The components of executive function (shifting, inhibition, and working memory) showed different patterns of correlation to performance on number processing tasks across the early years of school. Findings could be used to enhance teachers’ understanding about the role of the cognitive processes employed by children in numeracy learning, and so inform teachers’ classroom practices.
Resumo:
The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.
Resumo:
To evaluate the passage of cytokines through the gastrointestinal tract, we investigated the digestion of interleukin-8 (IL-8) and tumour necrosis factor α (TNFα), in vitro and in vivo, and their propensity to induce intestinal inflammation. We serially immuno-assayed IL-8 and TNFα solutions co-incubated with each of three pancreatin preparations at pH 4.5 and pH 8. We gavaged IL-8, TNFα and marker into 15 Wistar rats, and measured their faecal cytokine concentrations by ELISA and histologically examined their guts. IL-8 immunoreactivity was extinguished by all pancreatin preparations after 1 h of incubation at 37 °C. TNFα concentration progressively fell from 1 to 4 h with all enzyme preparations. Buffer control samples maintained their cytokine concentrations throughout incubation. No IL-8 or TNFα was detected in any rat faecal pellets. There was no significant proinflammatory effect of the gavaged cytokines on rat intestine. IL-8 and TNFα in aqueous solution could well be fully digested in the CF gut when transit time is normal and exogenous enzymes are provided, although cytokines swallowed in viscous sputum may be protected from such digestion
Resumo:
Gelonin is a single chain ribosome inactivating protein (RIP) with potential application in the treatment of cancer and AIDS. Diffraction quality crystals grown using PEG3350, belong to the space group P2(1), with it a = 49.4 Angstrom b = 44.9 Angstrom, c = 137.4 Angstrom and beta = 98.4 degrees, and contain two molecules in the asymmetric unit. Diffraction data collected to 1.8 Angstrom resolution has a R(m) value of 7.3%. Structure of gelonin has been solved by the molecular replacement method, using ricin A chain as the search model. Crystallographic refinement using X-PLOR resulted in a model for which the r.m.s deviations from ideal bond lengths and bond angles are 0.012 Angstrom and 2.7 degrees, respectively The final R-factor is 18.4% for 39,806 reflections for which I > 1.0 sigma(I).The C-alpha atoms of the two molecules in the asymmetric unit superpose to within 0.38 Angstrom for 247 atom pairs. The overall fold of gelonin is similar to that of other RIPs such as ricin A chain and alpha-momorcharin, the r.m.s.d. for C-alpha superpositions being 1.3 and 1.4 Angstrom, respectively The-catalytic residues (Glu166, Arg169 and Tyr113) in the active site form a hydrogen bond scheme similar to that observed in other RIPs. The conformation of Tyr74 in the active site, however, is significantly different from that in alpha-momorcharin. Three well defined water molecules are located in the active site cavity and one of them, X319, superposes to within 0.2 Angstrom of a corresponding water molecule in the structure of alpha-momorcharin. Any of the three could be the substrate water molecule in the hydrolysis reaction catalysed by gelonin.Difference electron density for a N-linked sugar moiety has been observed near only one of the two potential glycosylation sites in the sequence. The amino acid at position 239 has been established as Lys by calculation of omit electron density maps.The two cysteine residues in the sequence, Cys44 and Cys50, form a disulphide bond, and are therefore not available for disulphide conjugation with antibodies. Based on the structure, the region of the molecule that is involved in intradimer interactions is suggested to be suitable for introducing a Cys residue for purposes of conjugation with an antibody to produce useful immunotoxins.
Resumo:
We report ab initio calculations for the band dispersions and total as well as partial densities of states for vacancy ordered, clustered spinels, GaMo4S8 and GaV4S8. Results are presented for the high temperature cubic phase for both compounds. Additionally, we discuss results of similar calculations for GaMo4S8 in an idealized cubic structure, as well as the nonmagnetic and the ferromagnetic states of the low temperature rhombohedral structure. Comparison of these results allows us to discuss the unusual aspects of the electronic structure of this interesting class of compounds, and provide estimates of the crystal-field and exchange splitting strengths.
Resumo:
A bacterial consortium consisting of strains belongings to the genus Klebsiella and Rhodococcus quantitatively converts 1-, 3- and 7-substituted xanthines to their respective 8-oxo compounds.
Resumo:
The Role Of The Amino And Carboxyl-Terminal Regions Of Cytosolic Serine Hydroxymethyltransferase (SHMT) In Subunit Assembly And Catalysis Was Studied Using Sis Amino-Terminal (Lacking The First 6, 14, 30, 49, 58, And 75 Residues) And Two Carboxyl-Terminal (Lacking The Last 49 And 185 Residues) Deletion Mutants. These Mutants Were Constructed From A Full Length Cdna Clone Using Restriction Enzyme/PCR-Based Methods And Overexpressed In Escherichia Coli. The Overexpressed Proteins, Des-(A1-K6) SHMT And Des-(A1-W14)-SHMT Were Present In The Soluble Fraction And They Were Purified To Homogeneity. The Deletion Clones, For Des-(A1-V30)-SHMT And Des-(A1-L49)-SHMT Were Expressed At Very Low Levels, Whereas Des-(A1-R58)-SHMT, Des-/A1-G75)-SHMT, Des-(Q435-F483)-SHMT And Des-(L299-F483)-SHMT Mutant Proteins Were Not Soluble And Formed Inclusion Bodies. Des-(A1-K6)-SHMT And Des-(A1-W14)-SHMT Catalyzed Both The Tetrahydrofolate-Dependent And Tetrahydrofolate-Independent Reactions, Generating Characteristic Spectral Intermediates With Glycine And Tetrahydrofolate. The Two Mutants Had Similar Kinetic Parameters To That Of The Recombinant SHMT (Rshmt). However, At 55 Degrees C, The Des-(A1-W14)-SHMT Lost Almost All The Activity Within 5 Min, While At The Same Temperature Rshmt And Des-(A1-K6)-SHMT Retained 85% And 70% Activity, Respectively. Thermal Denaturation Studies Showed That Des-(A1-W14)-SHMT Had A Lower Apparent Melting Temperature (52 Degrees C) Compared To Rshmt (56 Degrees C) And Des-(A1-K6)-SHMT (55 Degrees C), Suggesting That N-Terminal Deletion Had Resulted In A Decrease In The Thermal Stability Of The Enzyme. Further Urea Induced Inactivation Of The Enzymes Revealed That 50% Inactivation Occurred At A Lower Urea Concentration (1.2+/-0.1 M) In The Case Of Des-(A1-W14)-SHMT Compared To Rshmt (1.8+/-0.1 M) And Des-(A1 -K6)-SHMT (1.7+/-0.1 M). The Apoenzyme Of Des-/A1-K6)-SHMT Was Present Predominantly In The Dimer Form, Whereas The Apoenzymes Of Rshmt And Des-(A1-K6)-SHMT Were A Mixture Of Tetramers (Approximate To 75% And Approximate To 65%, Respectively) And Dimers. While, Rshmt And Des-(A1-K6)-SHMT Apoenzymes Could Be Reconstituted Upon The Addition Of Pyridoxal-5'-Phosphate To 96% And 94% Enzyme Activity, Respectively Des-(A1-W14)-SHMT Apoenzyme Could Be Reconstituted Only Upto 22%. The Percentage Activity Refined Correlated With The Appearance Of Visible CD At 425 Nm And With The Amount Of Enzyme Present In The Tetrameric Form Upon Reconstitution As Monitored By Gel Filtration. These Results Demonstrate That, In Addition To The Cofactor, The N-Terminal Arm Plays An Important Role In Stabilizing The Tetrameric Structure Of SHMT.
Resumo:
In the title compound, C23H26O3, the three six-membered rings of the xanthene system are non-planar, having total puckering amplitudes, QT, of 0.443 (2), 0.202 (2) and 0.449 (2) Å. The central ring adopts a boat conformation and the outer rings adopt sofa conformations. The crystal structure is stabilized by van der Waals interactions.
Resumo:
Emmotin-H, a naturally occurring sesquiterpenoid 1,2-naphthoquinone pigment (1) has been synthesised in a four step sequence starting from the known 5,8-dimethyl-4-oxotetralin-2-carboxylic acid (3a). Selenium dioxide oxidation of its methyl ester (3b) gives 3-methoxycarbonyl-5,8-dimethyl-1,2-naphthoquinone (4) which on reductive acetylation affords the corresponding diacetoxynaphthalene ester (5). Its reaction with excess of methylmagnesium iodide is accompanied by aerial oxidation during work-up and furnishes emmotin-H (1).
Resumo:
Miniaturization of analytical instrumentation is attracting growing interest in response to the explosive demand for rapid, yet sensitive analytical methods and low-cost, highly automated instruments for pharmaceutical and bioanalyses and environmental monitoring. Microfabrication technology in particular, has enabled fabrication of low-cost microdevices with a high degree of integrated functions, such as sample preparation, chemical reaction, separation, and detection, on a single microchip. These miniaturized total chemical analysis systems (microTAS or lab-on-a-chip) can also be arrayed for parallel analyses in order to accelerate the sample throughput. Other motivations include reduced sample consumption and waste production as well as increased speed of analysis. One of the most promising hyphenated techniques in analytical chemistry is the combination of a microfluidic separation chip and mass spectrometer (MS). In this work, the emerging polymer microfabrication techniques, ultraviolet lithography in particular, were exploited to develop a capillary electrophoresis (CE) separation chip which incorporates a monolithically integrated electrospray ionization (ESI) emitter for efficient coupling with MS. An epoxy photoresist SU-8 was adopted as structural material and characterized with respect to its physicochemical properties relevant to chip-based CE and ESI/MS, namely surface charge, surface interactions, heat transfer, and solvent compatibility. As a result, SU-8 was found to be a favorable material to substitute for the more commonly used glass and silicon in microfluidic applications. In addition, an infrared (IR) thermography was introduced as direct, non-intrusive method to examine the heat transfer and thermal gradients during microchip-CE. The IR data was validated through numerical modeling. The analytical performance of SU-8-based microchips was established for qualitative and quantitative CE-ESI/MS analysis of small drug compounds, peptides, and proteins. The CE separation efficiency was found to be similar to that of commercial glass microchips and conventional CE systems. Typical analysis times were only 30-90 s per sample indicating feasibility for high-throughput analysis. Moreover, a mass detection limit at the low-attomole level, as low as 10E+5 molecules, was achieved utilizing MS detection. The SU-8 microchips developed in this work could also be mass produced at low cost and with nearly identical performance from chip to chip. Until this work, the attempts to combine CE separation with ESI in a chip-based system, amenable to batch fabrication and capable of high, reproducible analytical performance, have not been successful. Thus, the CE-ESI chip developed in this work is a substantial step toward lab-on-a-chip technology.