995 resultados para 35DR20020113-2-track


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present measurements of pCO2, O2 concentration, biological oxygen saturation (Delta O2/Ar) and N2 saturation (Delta N2) in Southern Ocean surface waters during austral summer, 2010-2011. Phytoplankton biomass varied strongly across distinct hydrographic zones, with high chlorophyll a (Chla) concentrations in regions of frontal mixing and sea-ice melt. pCO2 and Delta O2 /Ar exhibited large spatial gradients (range 90 to 450 µatm and -10 to 60%, respectively) and co-varied strongly with Chla. However, the ratio of biological O2 accumulation to dissolved inorganic carbon (DIC) drawdown was significantly lower than expected from photosynthetic stoichiometry, reflecting the differential time-scales of O2 and CO2 air-sea equilibration. We measured significant oceanic CO2 uptake, with a mean air-sea flux (~ -20 mmol m-2 d-1) that significantly exceeded regional climatological values. N2 was mostly supersaturated in surface waters (mean Delta N2 of +2.5 %), while physical processes resulted in both supersaturation and undersaturation of mixed layer O2 (mean Delta O2phys = 2.1 %). Box model calculations were able to reproduce much of the spatial variability of Delta N2 and Delta O2phys along the cruise track, demonstrating significant effects of air-sea exchange processes (e.g. atmospheric pressure changes and bubble injection) and mixed layer entrainment on surface gas disequilibria. Net community production (NCP) derived from entrainment-corrected surface Delta O2 /Ar data, ranged from ~ -40 to > 300 mmol O2 m-2 d-1 and showed good coherence with independent NCP estimates based on seasonal mixed layer DIC deficits. Elevated NCP was observed in hydrographic frontal zones and regions of sea-ice melt with shallow mixed layer depths, reflecting the importance of mixing in controlling surface water light and nutrient availability.