897 resultados para 300302 Plant Growth and Development
Resumo:
The changes of the concentration of iron in the growth substrates and the sporophores of Agaricus bisporus (Lange) Pilat that occurred during culture under standard commercial conditions, were observed using atomic absorption spectrophotometry and iron-59 radiotracing techniques. The routes of translocation and sites of iron accumulation within the sporophore were shovn to alter during development and by the use of novel, pelletised substrates the concentration of iron in the mycelium of the substrates and in developing sporophores was observed during culture. Findings indicated that the compost was the major source of iron and that the concentration of iron in the compost mycelium varied cyclically in relation to the periodic appearance of sporophores. In the casing layer the mycelium is organised into strands which are responsible for the movement of iron from the compost into developing sporophores. A photographic technique for estimating sporophore growth rates showed that the accumulation of iron was not concomitant with sporophore growth and this was attributable to a declining quantity of available iron in the compost mycelium during sporophore growth. Variations in the quantity of iron in sporophores resulted primarily from differences in the quantity of water soluble iron in the compost but, the productivity of the crop, the type of casing layer and differences in watering also influenced sporophore composition. Changes in the concentration of extractable iron in the compost and casing layer throughout culture were related to mycelial activity and to a lesser extent were influenced by watering and the bacterial populations of the casing layer. Thus, the findings of this study give some indication of the relative importance that different cultural conditions exert over sporophore composition together with demonstrations of the movement of a single material within the sporophores and substrates during the cultivation of Agaricus bisporus.
Resumo:
To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines.
Resumo:
O objetivo do presente trabalho foi testar a influência de quatro dietas alimentares sobre o crescimento populacional, desenvolvimento, comprimento total, peso seco e valor nutricional de duas espécies zooplanctônicas, Moina micrura and Diaphanosoma birgei, com os seguintes tratamentos alimentares: somente alga (A), alga + vitaminas (AV), alga + ração (AR) e alga + ração + vitaminas (ARV). O pico de crescimento para as duas espécies estudadas ocorreu mais rápido no tratamento AV. em geral, o tratamento AV para M. micrura mostrou melhores resultados para taxa intrínseca, fecundidade, desenvolvimento embrionário e pós-embrionário. Já a longevidade e número total de desovas apresentaram melhores resultados no tratamento AR (p < 0,05). Para D. birgei, os melhores resultados foram obtidos nos tratamentos contendo ração e vitamina (p < 0,05). A maior porcentagem de proteínas e lipídeos para os dois cladóceros ocorreu nos tratamentos contendo ração, já o carboidrato foi maior no tratamento contendo somente alga (p < 0,05). em geral, as dietas contendo ração e vitamina apresentaram os melhores resultados para o desenvolvimento dos cladóceros, com qualidade de água adequada para cultivo, podendo ser utilizadas em culturas com altas concentrações em laboratório.
Resumo:
Biochar has been heralded a mechanism for carbon sequestration and an ideal amendment for improving soil quality. Melaleuca quinquenervia is an aggressive and wide-spread invasive species in Florida. The purpose of this research was to convert M. quinquenervia biomass into biochar and measure how application at two rates (2% or 5% wt/wt) impacts soil quality, plant growth, and microbial gas flux in a greenhouse experiment using Phaseolus vulgaris L. and local soil. Plant growth was measured using height, biomass weight, specific leaf area, and root-shoot ratio. Soil quality was evaluated according to nutrient content and water holding capacity. Microbial respiration, as carbon dioxide (CO2), was measured using gas chromatography. Biochar addition at 5% significantly reduced available soil nutrients, while 2% biochar application increased almost all nutrients. Plant biomass was highest in the control group, p2 flux decreased significantly in both biochar groups, but reductions were not long term.
Resumo:
The effects of plant density and the number of emitters per Styrofoam box on plant growth and nitrate (NO3-) concentration were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrate and were grown during winter in an unheated greenhouse with no supplemental lighting. The experiment was carried out with four treatments, including two plant densities (160 and 280 plants/m2) and two number of emitters per Styrofoam box (4 and 8 emitters). Each planting box was irrigated daily and fertigated with a complete nutrient solution. Shoot dry weight was not affected by plant density. However, yield increased with plant density and emitter number. Leaf-blade NO3- concentration was not affected by the interaction between plant density and number of emitters, but petioles NO3- concentration was greater in treatment with 160 plants/m2 and 8 emitters. Although leaf-blade NO3- concentration was not affected by plant density, it decreased with the number of emitters. On the other hand, petiole NO3- concentration was not affected by plant density or number of emitters. Leaf-blade NO3- concentration ranged from 3.2 to 4.1 mg/g fresh weight, occurring the highest value in the treatment with 280 plants/m2 and 4 emitters. Petiole NO3- concentration ranged from 3.5 to 5.3 mg/g fresh weight, values that were higher than allowed by EU regulation.
Resumo:
Abstract The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N. Keywords Spinacia oleracea; chlorophyll meter; coir; peat; soilless culture systems
Resumo:
The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N.
Resumo:
The molecular mechanisms that regulate the transcription of key developmental genes involved in shoot organogenesis have yet to be fully elucidated. However, it is clear that plant growth regulators, such as cytokinin, play a critical role in the differentiation of adventitious shoots. In Nicotiana tabacum zz100 leaf discs, high frequency shoot formation could be induced with 5 muM of the cytokinin N-6-benzyladenine (BA). Increasing the exogenous BA concentration to greater than 20 muM resulted in stunted explants with abnormal shoot morphology and altered mineral composition. Explants with abnormal shoots did not appear to be hyperhydric. Abnormalities were, however, associated with an increase in the expression of a knotted1-type homeobox gene (TobH1) isolated from normal shoot-forming cultures. The results suggest that the development of cytokinin-induced abnormal shoot morphology possibly involves changes in TobH1 gene expression.
Resumo:
Grevillea (Proteaceae) is a native Australian plant genus with high commercial value as landscape ornamentals. There has been limited research on the culture and propagation of Australian native species. The effect of indole-3-butyric acid (IBA) on the rooting of G. 'Royal Mantle' and G. 'Coastal Dawn' in winter, spring and summer was evaluated at University of Queensland Gatton, Southern Queensland in order to determine the rooting ability of this species in different seasons. Both Grevillea cultivars showed seasonal rooting. The more difficult-to-root G. 'Coastal Dawn' had a reduced response to IBA application than G. 'Royal Mantle'. Stem and leaf indole-3-acetic acid (IAA) levels were not different between cultivars, therefore rooting ability between the two cultivars does not appear to be due to the differences in endogenous IAA levels. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A barrier to the domestication of the phosphorus (P) sensitive Australian species Caustis blakei (Cyperaceae) is the standard production systems used commercially which invariably result in problems associated either with P deficiency or P toxicity. This paper reports on the growth responses of Caustis blakei cv. M63 to applications of fertiliser P as either monocalcium phosphate (MCP) or granulated Guano Gold (R) rock phosphate (RP) in two soils with different capacities to adsorb P. The Caustis M63 plants grown in the two soils did not show P toxicity symptoms when fertilised with RP, but shoot dry weight was 30-60% lower than the control in both soils at the highest rate of MCP-P application (156 kg ha(-1), 184 g m(-3)) and this was associated with visible symptoms of drying of the tips of the ultimate branchlets, in the Mt Cotton soil only. The greatest shoot and root dry weights were achieved by plants grown in the higher P adsorbing Palmwoods soil fertilised with RP at P rates of 30-184 g m(-3). Caustis plants grown in the Palmwoods soil had 2.3 times greater root dry weights than plants grown in the Mt Cotton soil irrespective of the P fertiliser type used. Caustis plants growing in Mt Cotton soil which did not receive P showed significantly lower shoot and root dry weight when compared to plants in the Palmwoods soil, probably due to the low initial bicarbonate-extractable P and the high buffering capacity of the Mt Cotton soil. The P concentration in shoots of Caustis fertilised with MCP at 184 g m(-3) was higher when grown in Mt Cotton soil (0.22%) than in the Palmwoods soil (0.15%). The P concentration was lower in the terminal ultimate branchlets (TUB); 0.15% for the Mt Cotton soil and 0.10% for the Palmwoods soil, suggesting that shoots would provide a more useful indicator of P toxicity than the TUB. It is interesting to speculate as to why plants in the Palmwoods soil showed greater root growth and fewer symptoms of P toxicity. This could be because the Palmwoods soil had the greater P adsorption capacity. These results indicate in ground production of Caustis cut foliage will require careful management of P nutrition and understanding of the complex soil/plant interactions associated with the acquisition of P. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Potassium chlorate (KClO3) treatments are known to promote flowering in longan plants. Potential effects of KClO3 on Phalaenopsis orchid flowering were investigated in the present study. However, increasing application concentrations of 2, 4, 8 and 16 mmol/L KClO3 delayed spike emergence by 5, 6, 18 and 26 days, respectively Moreover, they reduced final spike length by 2.1%, 4.0%, 16.2% and 46.1%, respectively. Nonetheless, application of KClO3 at 4 and 8 mmol/L advanced the time to appearance of the first open flower by 13 and 24 days, respectively. Use of 8 mmol/L KClO3 also increased the number of floral buds by 16%. Treatments with KClO3 tended to reduce flower size. Overall, the data suggest that application of KClO3 at an appropriate concentration (e.g. 8 mmol/L) can increase the number of floral buds and advance the time to Phalaenopsis orchid flowering, but may reduce flower size. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A field study in three vineyards in southern Queensland (Australia) was carried out to develop predictive models for individual leaf area and shoot leaf area of two cultivars (Cabernet Sauvignon and Shiraz) of grapevines (Vitis Vinifera L.). Digital image analysis was used to measure leaf vein length and leaf area. Stepwise regressions of untransformed and transformed models consisting of up to six predictor variables for leaf area and three predictor variables for shoot leaf area were carried out to obtain the most efficient models. High correlation coefficients were found for log10 transformed individual leaf and shoot leaf area models. The significance of predictor variables in the models varied across vineyards and cultivars, demonstrating the discontinuous and heterogeneous nature of vineyards. The application of this work in a grapevine modeling environment and in a dynamic vineyard management context are discussed. Sample sizes for quantification of individual leaf areas and areas of leaves on shoots are proposed based on target margins of errors of sampled data.